Contents of Patterns in Pythagoras
 
 
1. Patterns in Right Triangles and Pythagorean Triples
 
1.       Introduction
2.       Finding Right Triangles with Integral Sides
3.       Primitive Pythagorean Triples and Triangles
4.       A Generating Formula for Primitive Pythagorean Triples
5.       Properties of Primitive Pythagorean Triples
6.       Areas and Perimeters of Complete Right Triangles
 
2. More Patterns in Right Triangles and Pythagorean Triples
 
1.       Introduction
2.       Possible Values for a
3.       Possible Values for b
4.       Possible Values for c
 
3. Even More Patterns in Right Triangles and Pythagorean Triple
 
                                                     1.   The Relative Sizes of a, b, and c        
                                             3A    2.   Regular and Inverted Triples          
                                                     3.   Proper Primitive Pythagorean Triples
                                             
                                             3B    4. Unit and Constant Difference Triples
 
                                             3C    5. Complete Primitive Pythagorean Triples
 
4. Still More Patterns in Right Triangles and Pythagorean Triples
 
1.       Multiplication of Primitive Pythagorean Triples
2.       Division of Pythagorean Triples
3.       Powers of Primitive Pythagorean Triples
4.       The Square Root of Primitive Pythagorean triples
5.       Two New Pythagorean Triples (1,0,1) and (0,0,0)
6.       Adding Primitive Pythagorean Triples
7.       Subtracting Complete Primitive Pythagorean triples
8.       Negative Pythagorean Triples
9.       The Distributive Property for Pythagorean Triples
 
5. Further Patterns in Right Triangles and Pythagorean Triples
 
1.       Multiplication Of Pythagorean Triples by a Constant
2.       Solving Pythagorean Triple Equations
3.       Complete Pythagorean Triples and Vector Spaces
4.       Some Notable Patterns (The 3-4-5 and 5-12-13 patterns)
5.       Generating Pythagorean Triples from the Fibonacci Sequence
6.       Constructing a Triple whose c-value Is c2
 

 
Patterns in Pythagoras
 
5. Further Patterns in Right Triangles
and Pythagorean Triples
 
David W. Hansen
                                                                                      ©2008                                                                                    1. Multiplication of Pythagorean Triples by a Constant
     In Part 4, we learned how to add complete Pythagorean triples. The results are given below.
      
                                                                Addition of Complete Triples
 
                     If (a1, b1, c1) and (a2, b2, c2) are positive or negative complete triples or (0,0,0), then
 
                                                (a1, b1, c1)   +   (a2, b2, c2)   =   (a, b, c),      where
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                                       1.   a1 + a2 + 1,    if a1 and a2 are both positive,               
                                      
                                       2.   a1 + a2 - 1,    if a1 and a2 are both negative,
 
                                       3.    a)       0,            if  a1 + a2  =  0,
                                              b)       a           if      a2      =  0,
                 a   =                      c)       a2            if      a1      =  0,  
 
                                       4.   a1 + a2 + 1,    if a1 and a2 are of opposite sign, and the negative number           
                                                                   is larger than the positive one in absolute value 
                                  
                                       5.   a1 + a2 - 1,    if a1 and a2 are of opposite sign, and the negative number                   
                                                                   is smaller than the positive one in absolute value
  
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                          
                                          (a2 – 1)/2, if a  ¹  0,                                      b + 1,        if a  ¹  0,         
                   b   =                                                         and       c   =    
                                                 0,        if a  =  0,                                         0,           if a  =  0.
   __________________________________________________________________________________
 
To subtract complete Pythagorean triples, we found
 
                                                              Subtraction of Complete Triples
    
                                             If (a1, b1, c1) and (a2, b2, c2) are complete triples, then
 
                                     (a1, b1, c1) – (a2, b2, c2) =   (a1, b1, c1) + ( - 1, 0, 1) x (a2, b2, c2)
 
                                                                  =   (a1, b1, c1) + ( - a2, b2, c2).
                                _________________________________________________________
 
and we also found out how to multiply, divide, take square roots of, and find integral powers of Pythagorean triples. However, we never considered what it would mean to multiply a Pythagorean triple by an integer. Let's consider it now.
 
                          Multiplying a Positive Complete Triple by a Positive Integer
 
     In multiplying 6 by 2, we mean adding up two sixes; 2(6) = 6 + 6, and in multiplying 5 by 3, we mean adding up three 5’s; 3(5) = 5 + 5 + 5. Thus, in multiplying the triple (3, 4, 5) by 2, we shall mean adding up two (3, 4, 5) triples; thus, 2(3, 4, 5) = (3, 4, 5) + (3, 4, 5). Adding these two triples together by using Rule 1 in the table of addition above, we get
                                         2(3, 4, 5)   =   (3, 4, 5)  +  (3, 4, 5)  =  (3 + 3 + 1,  b,  c)
                                                          =   (2(3) + 1,  b, c)  =  (7, 24, 25).
 
Note that the a-value is twice the a-value of the original triple, 2(3), plus 1 more, since we carried out one addition.
 
     To multiply (5, 12, 13) by 4, we have
 
                                     4(5, 12, 13)  =  (5, 12, 13)  +  (5, 12, 13)  +  (5, 12, 13)  +  (5, 12, 13),
 
and using Rule 1 in the table above for each of the three additions, we get
 
                                     4(5, 12, 13)  =  (5, 12, 13)  +  (5, 12, 13)  +  (5, 12, 13)  +  (5, 12, 13),
                                                         =       (5 + 5 + 1,  __  ,  __ )      +      (5 + 5 + 1,  __  ,  __  ),
                                                         =             ((5 + 5 + 1) + (5 + 5 + 1) + 1,  __  , __ )
                                                         =                  ( 4(5) + 3,  __  ,  __ )     =     (23, 264, 265).
 
Note that the a-value is four times the a-value of the original triple, 4(5), plus 3 more, since we carried out three additions.
 
    In general, if (a, b, c) is a positive complete triple, then k(a, b, c), for k a positive integer, means the sum of k of the (a, b, c)’s;  that is k(a, b, c) = (a, b, c) + (a, b, c) + . . .  + (a, b, c) for k triples, and in finding the a-value of this sum, we simply add up the k a’s and then add 1 more for each addition. Since adding up k triples involves carrying out k –1 additions, we must add k –1 to the sum of our k a’s, giving us ka + (k – 1) for the a-value of the sum. To find the b- and c-values, we use those given in the addition table above.
 
     Since we are not multiplying two triples together, but rather are multiplying one triple by an integer, we shall call this scalar multiplication, and the multiplication of one triple by another, we shall call triple multiplication. Thus, we have
 
                                                      Scalar Multiplication of Positive Complete Triples
 
                                       If k is a positive integer, and (a, b, c) is a positive complete triple, then
 
                                                                          k(a, b, c) = (a1, b1, c1),
 
                                                  where    a1 = ka + (k -1), b1 = (a12 – 1)/2, and c1 = b1 + 1.     
                                      ___________________________________________________________                          (1)
 
 and from section 4, we have
 
                                                                       Triple Multiplication of Triples
 
                                             If (a1, b1, c1) and (a2, b2, c2) are two Pythagorean triples, then  
 
                                           (a1, b1, c1) x (a2, b2, c2)   =   ( a1a2,   b1c2 + c1b2,   b1b2 + c1c2 ),
       
                                                                      which is a Pythagorean triple.
                                            _____________________________________________________
 
Examples
 
1. 3(5, 12, 13) = (a1, b1, c1), where a1 = 3(5) + 2 = 17, b1 = (172 – 1)/2 = 144, and c1 = 144 + 1 = 145.
           
                                Thus,  3(5, 12, 13) = (17, 144, 145), which is scalar multiplication.
 
2. (3, 4, 5) x (5, 12, 13)  =  (3x5, 4x13 + 5x12, 4x12 + 5x13)  =  (15, 112, 113), which is triple multiplication.
 
3.   If X  =  (9, 40, 41) and  Y  =  (5, 12, 13), then 
 
           4X –  5Y   +   (7, 24, 25)       =    4(9, 40, 41) – 5(5, 12, 13) +  (7, 24, 25)
                                                        =   (4(9)+3, __ , __ ) – (5(5)+4, __, __ ) + (7, 24, 25)
                                                        =   (39, (39- 1)/2, __ ) + ( - 29, (29- 1)/2, __ ) + (7, 24, 25)
                                                        =   (39, 760, 761) + ( - 29, 420, 421)   +  (7, 24, 25)
                                                        =   (39 – 29 – 1, __, __ ) + (7, 24, 25) = (9, (9- 1)/2, __ ) + (7, 24, 25)
                                                        =   (9, 40, 41) + (7, 24, 25) = (9 + 7 + 1, __, __ )
                                                        =   (17, (172  - 1)/2, __ ) = (17, 144, 145).             
 
Here we have shown the full solution, using the addition and subtraction rules given on page 1 above, and filling in the blank values for b and c as we moved along. But it is not necessary to find the b- and c-values for these intermediate triples in our solution. Since we are working with complete triples, we need find only the a-values of the intermediate triples as we go along, and then calculate the b- and c-values, b = (a2 – 1)/2,  c = b + 1, at the end. Here’s how.   
                                       4X – 5Y + (7, 24, 25)    =    4(9, 40, 41) – 5(5, 12, 13) + (7, 24, 25)
 
                                                             a-value    =   4(9)+3,   – (5(5)+4),   + 7
                                                                             =    39,    – 29,     + 7
                                                                             =   39 – 29 – 1,     + 7    =    9,   + 7
                                                                             =    9 + 7 + 1   =   17.
 
Thus, a = 17, b = (172  - 1)/2 = 144, and c = 144+1 = 145, giving us (17, 144, 145). (For clarity, we used commas to separate the a-values for each of the three triples.)
 
4.  Solve X  –  4(3, 4, 5)  =  2(11, 60, 61) for the complete triple X.   Adding 4(3, 4, 5) to both sides of the given
equation, we get                                      X  =   2(11, 60, 61) + 4(3, 4, 5).                 
Calculating the a-value of X for the sum of the two triples above, we have
 
                                                2(11)+1,  + 4(3)+3     =   23,    + 15    =   23 + 15 + 1   =   39.
 
   Thus, a = 39, b = (392 – 1)/2 = 760, c = b + 1 = 761,   and   X = (39, 760, 761).
 
Check: Substituting X into the left-hand side of the equation above, we get
 
                    (39, 760, 761) – 4(3, 4, 5)   =   (39, 760, 761) – (15, 112, 113)   =   (39 – 15 – 1, __ , __ )
    
                                             =  (23, 264, 265)   =   (2(11)+1, __ , __ )   =  2(11, 60, 61). Ö
   
                        Multiplying a Negative Complete Triple by a Positive Integer
 
     Now what if our complete triple is a negative triple, say (a, b, c), where a is negative and b and c are positive integers? This is no problem.   3( - 5, 12, 13) simply means three of the triples ( - 5, 12, 13) added together,
         
                                                    ( - 5, 12, 13)   +   ( - 5, 12, 13)   +   ( - 5, 12, 13),  
 
and using Rule 2 in the table above for each of the two additions, we have
 
                                        3( - 5, 12, 13)  =  ( - 5, 12, 13)  +  ( - 5, 12, 13)  +  ( - 5, 12, 13)
 
                                                =  ( - 5 + (- 5) - 1, __ , __ ) + ( - 5 , 12, 13)  
 
                                                =   (( - 5 + (- 5) - 1) + (- 5 ) - 1 , __ , __ )
 
                                                =   ( 3(-5) - 2 , __ , __ )   =  ( - 17, 144, 145). 
 
Note that the a-value is three times the a-value of the original triple, 3(- 5), minus 2, since we carried out two additions.
 
     In general, k(a, b, c), where a is negative, means the sum of k of the (a, b, c)’s,
 
                                           k(a, b, c)  =  (a, b, c)  +  (a, b, c)  +  . . .  +  (a, b, c)     (for k triples),
 
and in finding the a-value of this sum, we add up the k a’s and then subtract 1 for each addition since a is negative. Since adding up k triples involves carrying out k –1 additions, we must subtract k –1 from the sum of our k a’s, giving us ka - (k -1) for the a-value of the sum. This gives us
 
                                                   Scalar Multiplication of Negative Complete Triples
 
                                    If k is a positive integer, and (a, b, c) is a negative complete triple, then
 
                                                                      k(a, b, c) = (a1, b1, c1)
 
                                               where    a1 = ka – (k -1), b1 = (a12 – 1)/2, and c1 = b1 + 1.                                    (2)     
                                 _____________________________________________________________
 
Examples
 
5. If X  =  ( - 7, 24, 25)  and  Y  =  (- 3, 4 5),  then  5X  –  2Y  =  5( - 7 , 24, 25)  –   2( - 3, 4, 5)
  
           = ( 5(-7) – 4, __ , __ )  –  ( 2(-3) – 1, __ , __ )   =   ( - 39, __ , __ )  –  ( - 7, __ , __ ).   
 
 Using our method of subtraction from above, we change the subtraction to the addition of the negative of the triple ( - 7, __ , __ ) and get
 
                   =   ( - 39, __ , __ )   +  (- ( - 7), __ , __ )    =    ( - 39, __ , __ )   +   ( 7, __ , __ )
 
                   =   ( - 39 + 7 + 1, __ , __ )   =   (- 31, ((-31)2 – 1)/2), __ )   =   ( - 31, 480, 481).
 
 
                           Multiplying a Complete Triple by a Negative Integer
 
     Let’s see what happens if we multiply a complete triple by a negative integer. Just as (- 2)(5) = 2(- 5), it seems reasonable for - 2(5, 12, 13) to equal 2( - 5, 12, 13). Let’s see if it does. 
 
     Let (a, b, c) be any complete triple. Then,
 
                      (a, b, c)  –  2(5, 12, 13)    =   (a, b, c)  – (2(5)+1, __ , __ )
                                                               =   (a, b, c)  –   (11, 60, 61)
                                                               =   (a, b, c)  + ( - 11, 60, 61)  
                                                               =   (a, b, c)  + ( 2(-5) – 1, 60, 61)
                                                               =   (a, b, c)  +     2( - 5, 12, 13).  
 
Thus,                               (a, b, c)  –  2(5, 12, 13)    =   (a, b, c)  +  2( - 5, 12, 13).
 
Subtracting (a, b, c) from both sides of the above equation, we get
 
                                                              - 2(5, 12, 13)    =    2( - 5, 12, 13),
 
and our surmise is correct. In general, we shall say that 
 
                                                                    - k(a, b, c)   =   k(-a, b, c).                                                                  (3)
 
Now, (3) tells us, for example, that    - 3(3, 4, 5) =    3( - 3, 4, 5). However, if we use the rule for scalar multiplication of negative triples from (2) above to check this, we find that the
 
                                      a-value of    - 3(3, 4, 5)    =  - 3(3) – ( - 3 - 1)   =   - 9 – ( - 4) =     - 5,
 
but the                           a-value of    3( - 3, 4, 5)   =   3(- 3) – ( 3 -1)     =   - 9  -– 2      =  - 17.
 
What went wrong? Well, for 3( - 3, 4, 5) , the k-value, 3, is positive and tells us that there are 3 triples to be added together. However, for - 3(3, 4, 5), the k-value, - 3, is negative, and so does not tell us the number of triples to be added. To correct this, we must use the absolute value of k when determining the number of triples to be added. Thus, we must rewrite the a-value for k(a, b, c) in (2) as  ka  –  ( |k| - 1).
 
     Similarly, just as (-2)(-5) = 2(5), it seems reasonable that   - 2( - 5, 12, 13) should equal   2(5, 12, 13). Let’s see if it does. 
 
Let (a, b, c) be any complete triple. Then,
 
                               (a, b, c) – 2( - 5, 12, 13)    =   (a, b, c) – (2(-5) - 1, __ , __ )
                                                                         =   (a, b, c) – ( - 11, 60, 61)
                                                                         =   (a, b, c) + ( 11, 60, 61) 
                                                                         =   (a, b, c) + ( 2(5) + 1, 60, 61)
                                                                         =   (a, b, c) + 2(5, 12, 13).  
 
Thus,                   (a, b, c)  –   2( - 5, 12, 13)    =   (a, b, c)  +   2( 5, 12, 13).
 
Subtracting (a, b, c) from both sides of the above equation, we get
 
                                                               - 2( - 5, 12, 13)   =    2( 5, 12, 13),
 
and our surmise is correct. Thus, in general, we shall say that
 
                                                                        - k(-a, b, c) =   k(a, b, c).                                                                    (4)
 
Now, (4) tells us, for example, that    - 3( -3, 4, 5) =    3( 3, 4, 5). However, if we use the rule for scalar multiplication of negative triples from (2) above to check this, we find that the
 
                    a-value of    - 3( -3, 4, 5)   =  - 3( -3) – ( - 3 - 1)   =    9 –  ( - 4)   =  13,
but the         a-value of      3(  3, 4, 5)    =     3(3)  –  ( 3 -1)     =     9 –   2      =    7.
 
What went wrong? Well, for 3( 3, 4, 5) , the k-value, 3, is positive and tells us that there are 3 triples to be added together. However, for - 3( -3, 4, 5), the k-value, - 3, is negative, and so does not tell us the number of triples to be added. To correct this, we must use the absolute value of k when determining the number of triples to be added. Thus, we must rewrite the a-value for k(a, b, c) in (1) as   ka  –  ( |k| - 1).
 
     If k = 0, then we shall interpret 0(a, b, c) as meaning none or zero triples, and thus
 
                                                                           0(a, b, c)  =  (0, 0, 0).                                                                       (5)
 
                                          Multiplying a Complete Triple by an Integer
 
Combining (3), (4), and (5) with our observations about using |k| in determining the number of triples, we get
   
                                            Scalar Multiplication of Complete Triples by Integers
 
                                            If k is a non-zero integer, and (a, b, c) is a complete triple, then
 
                                                                    k(a, b, c) = (a1, b1, c1), where
                                               --------------------------------------------------------------------------
                                                                       ka + ( |k| - 1) if   ka > 0,
                                                       a1 =       
                                                                        ka – ( |k| - 1) if   ka < 0, 
                                              ----------------------------------------------------------------------------
                                                      b1   =  (a12 – 1)/2,        and         c1  =  b1 + 1.
                                              ----------------------------------------------------------------------------
                                     
                                                      If k = 0, then k(a, b, c) = (0, 0, 0)
                            _______________________________________________________________                          (6)
 
Examples.
 
6.    If a > 0,  then   -1(a, b, c)   =  ( -1(a)  –  (|-1| - 1), b1, c1)   =  ( - a  –  0, b1, c1)   =   ( - a, b1, c1),
and if a < 0,  then   -1(a, b, c)   =  ( -1(a)  +  (|-1| - 1), b1, c1)   =  ( - a  +  0, b1, c1)   =  ( - a, b1, c1),
where b1  =  (a2 – 1)/2  =  b,  and  c1  =  b + 1  =  c.   So,    
 
                                                              - 1(a, b, c)  =  ( - a, b, c).                                                                             (7)
 
7. The a-value of               2( - 3, 4, 5)   –   3(7, 24, 25)   –   6( - 5, 12, 13)
 
                                =    2(-3) – (|2| -1),     - 3(7)   – (|-3| -1),      (-6)(-5) + (|- 6| -1) 
                                =       2(-3)  –     1,           - 3(7)  –    2,                6(5) + 5
                                =                - 7,                        - 23,                           35     
                                =                         - 7  –  23  –  1,             35 
                                =         - 31, 35           =     - 31 + 35 - 1      =    3.
 
Thus      2( - 3, 4, 5)   –   3(7, 24, 25)    –   6( - 5, 12, 13)   =   (3, 4, 5).
 
                                   Multiplying a Complete Triple by a Rational Number
 
     The rules for scalar multiplication of complete triples as given in (6) above apply only when we multiply a complete triple by an integer. There is utterly no reason to think that these rules should apply when multiplying a complete triple by a rational number. But, let’s see.
 
     We know that if we multiply (5, 12, 13) by 3, we get  3(5, 12, 13)  =  (17, 144, 145).   So, if we multiply
(17, 144, 145) by 1/3, we should get back to (5, 12, 13), our original triple, shouldn’t we?  Let’s see.
 
     Using the rules for scalar multiplication of complete triples by integers in (6) above, we have 
 
           (1/3)(17, 144, 145)  =  ((1/3)17 + (|1/3)| - 1), __ , __ )  =  (17/3 + (1/3 – 1), __ , __ )
 
                                     =  (17/3 – 2/3, __ , __ )  =  (15/3, __ , __ )  =  (5, 12, 13) ,          
 
which is our original triple! Thus, it seems that our rules for scalar multiplication of complete triples may apply for some rational numbers as well as all integers! Let’s try more examples.
     
8. Using (6) with k = 4/3, we get       (4/3) (5, 12, 13)   =   ((4/3) 5 + 4/3 – 1, __ , __ )
 
                                             =  (20/3 + 4/3 – 1, __ , __ )  =  (7, 24, 25),  which is a complete triple.
 
 
9. Using (6) with k = 3/5, we get       (3/5) (7, 24, 25)   =   ((3/5)7 + 3/5 – 1, __ , __ )
 
            =  (21/5 + 3/5 – 1, __, __ )  =  (24/5 – 1, __, __ )  =  (19/5, __ , __ ),  which is NOT a complete triple.
 
                            (In fact, it is not even a Pythagorean triple because its a-value is not an integer.) 
  
     Clearly, we must come up with some restrictions on the values of k so that our scalar multiplication using rational numbers will always yield a complete triple.
 
     Let a > 0, and k = p/q, where p and q are integers > 0 with no common factors. Then, from (6), we have 
 
                 a1  =  ka + ( |k| - 1)  =   (p/q)a + |p/q| - 1  =  (p/q)a + p/q - 1  =    (p/q)(a + 1) - 1, 
 
or                                                                a1   =    p(a + 1)    - 1.                                                                          (8)
                                                                                      q
 
    a) Since a1 must be an integer, then    p(a + 1)   must be an integer, and since p and q have no common  
                                                                        q
 
factors, then q must be a divisor of a + 1. However, if q = a + 1, then q is even, since it is one greater than a, which is always odd. And, if q = a + 1, then (8) tells us that a1 = p – 1, so p = a1 + 1, and p is also even, since a1 is always odd. But p and q cannot both be even because they have no common factors. Thus, q cannot equal a + 1, and q must be a proper divisor of a + 1.
 
 
    b) Since a1 must be odd, then     p(a + 1) – 1    must be odd.     Then,   p(a + 1)   must be even, and so           
                                                                q                                                           q
 
                                                   either  (a + 1)/q  or  p must be even (or both).
 
 
      Similar analyses of (6) using various combinations of the signs of a, p, and q yield the following result.
 
 
                                      Scalar Multiplication of Complete Triples by Rational Numbers
 
             If k  =  p/q is a rational number, p and q have no common factors, (a, b, c) is a complete triple or O,
            q is a proper divisor of |a|+1, and either p or (|a|+1)/q is even,  then k(a, b, c) = (a1, b1, c1), where
               --------------------------------------------------------------------------------------------------------------------------
                                                                                ka + ( |k| - 1) if ka > 0,
                        
                                                a1    =                      ka - ( |k| - 1) if ka < 0, 
                                         
                                                                                       0            if ka   = 0
               ----------------------------------------------------------------------------------------------------------------------------
                                            (a12 – 1)/2      if a1  ¹  0                                             b1 + 1   if b1  ¹  0
                          b1    =                                                         and           c1    =
                                                   0              if a1  =  0                                                  0       if b1  =  0
                _______________________________________________________________________________      (9)
                                                                                                                                                    
 
Examples.
 
10.   If we multiply ( - 9, 40, 41) by 3/5, will we obtain a complete triple? Yes, because q  =  5 is a proper divisor of 
|a| + 1  =  9 + 1  =  10, and  (|a| + 1)/q  =  (9+1)/5  =  2 is even.
 
     Check:  (3/5) ( - 9, 40, 41)  =  ((3/5)(-9) – (|3/5| – 1), _ , _ )  =  ( - 27/5 - 3/5 + 1, _ , _ )  
                                              =    ( - 30/5 + 1, _ , _ )    =   ( - 6 + 1, _ , _ )   =  ( - 5, 12, 13).
 
11.  Will (3/2) (13, 84,85) be a complete triple?  No.  q  =  2 is a proper divisor of  |a| + 1  =  13 + 1 = 14, but since
p  =  3 is odd,  (|a|+1)/q  must be even by (9). However,  (|a|+1)/q  =  (13+1)/2  =  7, which is odd.
 
     Check:   (3/2) (13, 84, 85)  =  ((3/2)13 + |3/2| – 1, _ , _ )   =   (39/2 + 3/2 – 1, _ , _ )  =  (20, _ , _ ),  and we get
     a triple whose a-value is even, not odd as required!      
 
12.   Will ( - 7/4) (5, 12, 13) be a complete triple?  No, because q  =  4 is NOT a proper divisor of  |a| + 1
   =  5 + 1  =  6.
 
      Check: ( - 7/4) (5, 12, 13)  =  (( - 7/4)5 – (| - 7/4| - 1), _ , _ )  =  ( - 35/4 - 7/4 + 1, _ , _ )  =  ( - 42/4 + 1, _ , _ )
                                                =   ( - 38/4, _ , _ )  =  ( - 19/2, _ , _ ), which is NOT a triple at all!
 
                                                  2. Solving Pythagorean Triple Equations
 
     Using the rules for addition, subtraction, and multiplication of complete triples as given above at the start of section 1, and the rules for scalar multiplication of complete triples by rational numbers as given just above Example 10 , let’s solve some equations.
 
                                                    a) Linear equations and pure quadratic equations
 
1.   (2/3)X  =  (7, 24, 25).   Multiplying both sides of the equation by 3, we have
 
                                   3(2/3)X  =  3(7, 24, 25),       2X  =  (3(7) + 2, __ , __ ),       2X   =  (23, 264, 265).
   
Multiplying both sides of this last equation by 1/2 , we get
                
                                             (1/2)2X  =  (1/2)(23, 264, 265)   =  (23/2 + 1/2 - 1, __ , __ ),
 
    or                                                                    X  =  (11, 60, 61).
       
Check:  (2/3)(11, 60, 61)  =  ((2/3)11 + |2/3| - 1, _ , _ )  =  (24/3 – 1, _ , _ )  =  (7, 24, 25). 
  
Alternative solution: Multiplying both sides of the given equation by 3/2, we have
 
                                   (3/2)(2/3)X  =  (3/2)(7, 24, 25),     X  =  (21/2 + 3/2 - 1, __ , __ ),
 
   or                                                                      X  =  (11, 60, 61).       
 
2. 2X – (1, 0, 1)  =  ( - 5, 12, 13).       Adding (1, 0, 1) to both sides of the equation, we get
 
                                    2X  =  ( - 5, 12, 13) + (1, 0, 1)  =  ( - 5 + 1 + 1, __ , __ )  =  ( - 3, 4, 5),
 
or                                                                       2X  =  ( - 3, 4, 5).                        Multiplying both sides by 1/2, we get
 
              X   =   (1/2)( - 3, 4, 5)   =   ( - 3/2 – 1/2 + 1, __ , __ ),    or      X = ( - 1, 0, 1).
 
Check:  2(-1, 0, 1) – (1, 0, 1)  =  (2(-1) – (|2| - 1), _ , _ )  –  (1, 0, 1)   =  (- 3, _ , _ )   –   (1, 0, 1)      
 
                                                =  ( - 3 – 1 – 1, _ , _ )   =   ( - 5, 12, 13).
 
3.    5X2 + (7, 24, 25)  =  (57, 1624, 1625).  Subtracting (7, 24, 25) from both sides of the equation, we get 
 
                         5x =   (57, 1624, 1625)  –  (7, 24, 25)   =   (57 – 7 – 1, __ , __ ),
     
                               5X2  =  (49, 1200, 1201).                                             Multiplying both sides by 1/5, we get
 
                                 X2  =  (1/5)(49, 1200, 1201)  =  (49/5 + 1/5 – 1, __, __ ),    or      X2  =  (9, 40, 41). 
 
Taking the square root of both sides of this equation by Theorem 36 of Part 4, we find
                                 _________          __     _______       _______           _______      _______
                       X  = Ö (9, 40, 41)   = ( Ö9,  (Ö 41 + 40  -  Ö 41 – 40 )/2,  (Ö 41 + 40 + Ö 41 – 40 )/2 ) .
 
                           =   (3, (9 – 1)/2, (9 + 1)/2)   =   (3, 4, 5),      so     X  =  (3, 4, 5).
 
Check:    5(3,4,5)2 + (7, 24, 25)   =   5(9, 40, 41) + (7, 24, 25)   =   (5(9) + 4, _, _ ) + (7, 24, 25)  
 
                                    =   (49, _, _ )  +  (7, 24, 25)   =    (49 + 7 + 1, _ , _ )   =   (57, 1624, 1625).
    
 
                                               b) Scalar Quadratic Equations X2 + kX + A = O
 
     Let’s now solve general quadratic Pythagorean triple equations. We shall begin with a scalar quadratic equation of the form X2 + kX + A = O, where X = (x, y, z), k is an integer, A = (a, b, c) is a complete triple, and O = (0, 0, 0) is the zero triple.
 
     Substituting these values of X, k, and A into the quadratic equation, we get
 
                                                      (x, y, z)2  +  k(x, y, z)  +  (a, b, c)   =   (0, 0, 0).
 
Now, if x, k, and a are all positive, then the left-hand side of this equation will yield a positive triple and thus can never equal the zero triple on the right.  Accordingly, at least one of the x, k, or a must be negative for the quadratic equation to have any solutions.
 
A is a positive triple. ( a > 0, kx < 0 )
 
     Let’s assume that a is positive and that x and k are of opposite signs, so kx < 0.   Then, we have
 
                                                        X2  +  kX  +  (a, b, c)  =  (0, 0, 0),  
 
or                                         (x, y, z)2  +  k(x, y, z)  +  (a, b, c)   =   (0, 0, 0),  
 
and                              (x2, __ , __ )  +   (kx - ( |k| - 1), __ , __ )  +  (a, b, c)   =  (0, 0, 0).
 
Adding the first and third triples and simplifying the second triple in this last equation, we have
 
                                         (x2 + a + 1, __ , __ )  +   (kx - |k| + 1, __ , __ )  =   (0, 0, 0),
 
and using rule 3a from the Addition of Complete Triples in section 1, we get
 
                                                        (x2 + a + 1)    +    ( kx - |k| + 1)    =    0,
 
or                                                            x2  +  kx  +  (a - |k| + 2)   =   0,                                                                    (1) 
 
which is the auxiliary equation of     X2  +  kX  +  A  =  O.  The solutions to (1) give us the a-value(s) of X. 
To solve (1), we must know the values of k and a, but these are easy to find, since k is the scalar multiple of X in  
X2 + kX + A = O, and a is the a-value of the triple A .
 
Example 1.   Solve                  X2  +  7X  +  (15, 112, 113)  =  (0, 0, 0).                                                                  (2)
 
For this equation, k = 7 and a = 15, so the auxiliary equation (1) associated with this quadratic equation is
 
                                                           x2 +  kx  + ( a   - |k| + 2)   =  0,
 
or                                                        x2 + 7x + (15 - |7| + 2)  =  0,
 
which simplifies to                 x2 + 7x + 10   =   (x + 2)(x + 5)   =   0.         So x = - 2 or x = - 5
 
Note that since kx < 0 and k = 7 is positive, then the x-values will be negative. Furthermore, since these values of x are the a-values of the solution triple X, they must be odd, and we thus have only one solution; x  =  - 5. Our solution triple is then   
                                                                    X = ( - 5, 12, 13)  
 
To check this, we simply substitute X into the left-hand side of our original equation (2). Thus,
 
                                                      ( - 5, 12, 13)2   +     7( - 5, 12, 13)   +   (15, 112, 113)
                                           =        (25, 312, 313)   +  ( - 41, 840, 841)  +   (15, 112, 113)
                                           =        ( - 15, 112, 113)   +   (15, 112, 113)   =   (0, 0, 0).   Ö
 
Example 2.    Solve       X2  –  8X  +  (21,220,221)  =  (0, 0, 0).    Here k = - 8 and a  =  21.  Since k is negative, the x’s will be positive. The auxiliary equation   x2 + kx + (a - |k| + 2)  =  0 becomes  x2 –  8x + (21 – | - 8 | + 2)  =  0,
which simplifies to  x2 –  8x + 15  =  (x – 3)(x – 5)  =  0.  So, x  =  3  and  x  =  5  are the a-values of X.  Since both solutions are odd, we get two solutions to our equation; 
 
                                                               X  =  (3, 4, 5),   and   X  =  (5, 12, 13).
 
    Now, as shown in Examples  1  and  2,  we sometimes get one and sometimes two solutions for a scalar quadratic equation depending on whether   x2 +  kx  +  (a – |k| + 2)  =  0  has one or two odd solutions. However, if
x2 +  kx  + (a – |k|  + 2)  =  0  had two even solutions, then the scalar quadratic equation would have no solutions.
But this is not possible.   Here’s why.
 
     Suppose that e1 and e2 are two even integral solutions of x2 + kx + (a – |k| + 2)  =  0. Then,                 
  
                                   x2 +  kx + (a – |k| + 2)   =   (x – e1)(x – e2)   =    x2  –  (e1 + e2)x  +  e1e2.
 
Equating coefficients, we see that    k  =  - (e1 + e2),   and    a – |k| + 2  =  e1e2.           So,
 
                                                           a  =   e1e2   +           |k|         –   2,                                  and substituting for k,
we get                                                a  =   e1e2   +  | - (e1 + e2)|   –   2,
 
which is a sum of even integers. Thus, a is even. But this is not possible since a is the a-value of a complete triple and thus odd.  So,   x2 + kx + (a – |k| + 2)  =  0 CANNOT have two even integral solutions; at least one of them must be odd. Therefore, X2 + kX + A = O will always have at least one solution. This gives us
 
                                                        Solving X2 + kX + A  =  O for  X  if  A  is positive.
 
                  If A = (a, b, c) is a positive complete triple, k is an integer, and kx < 0, then any odd integral
                 value of x which is a solution of   x2 + kx + (a – |k| + 2) = 0 will be the a-value of a solution triple
                 X = (x, y, z) of   X2 + kX + A = O, where y = (x2 – 1)/2, and z = y + 1.
                 Furthermore, if x2 + kx + (a – |k| + 2) = 0 has integral solutions, at least one of them must be
                 odd, and thus X2 – kX + A = O will have at least one solution.
             _______________________________________________________________________________        (3)
 
Example 3.  Solve 3X2  –   48X  +  (233, 27144, 27145)  =  (0, 0, 0).     Multiplying both sides of the equation by 1/3, we get        
                                               X2   –   16X   +   (233/3 + 1/3 – 1, __, __ )   =   (0, 0, 0) ,  
 
or                                                                    X2  –  16X  +  (77, _ , _ )  =  (0, 0, 0). 
 
The auxiliary equation is then  x2  –  16x  +  (77 – |-16| + 2)  =  x2  –  16x  +  63  =  (x – 7)(x – 9)  =  0. 
 
So, x = 7 and x = 9, giving us             X  =  (7, 24, 25)    and    X  =  (9, 40, 41).  
 
Check:   For (7, 24, 25), we have          3(7, 24, 25)2  –  48(7, 24, 25)  +  (233, 27144, 27145)
            =  3(49, _ , _ )  –  (48(7) + 47, _ , _ )  +  (233, _ , _ )  =  (3(49) + 2, _ , _ ) – (383, _ , _ )  +  (233, _ , _ )
            = (149, _ , _ )  –  (383, _ , _ )  +  (233, _ , _ )  =  (383, _ , _ ) – (383, _ , _ ) =  (0, 0, 0). Ö
 
Check:   For (9, 40, 41), we have            3(9, 40, 41)2  –  48(9, 40, 41)  +  (233, 27144, 27145)
          = 3(81, _ , _ )  –  (48(9) + 47, _ , _ )  +  (233, _ , _ )  =  (3(81) + 2, _ , _ )  –  (479, _ , _ )  +  (233, _ , _ )
          = (245, _ , _ )  –  (479, _ , _ )  +  (233, _ , _ )  =  (479, _ , _ ) – (479, _ , _ ) =  (0, 0, 0). Ö
 
                                                                      The General Method
 
     So far, in solving X2 + kX + A = O, we have considered the cases where k < 0 and x > 0 , or k > 0 and x < 0, 
(kx <  0), and A is a positive triple. We could now consider the cases where A is a negative triple, or where
k and x are both negative and A is either a positive or negative triple, but this would be tedious. It is much easier to use a general method to solve scalar quadratic equations. This method consists of simply replacing X by
(x, y, z) in the original equation to be solved and then solving the resulting auxiliary equation by using the rules for addition, subtraction, and multiplication of complete Pythagorean triples as given above. Here are four examples of this method, one for each possible sign of k or a.
  
Example 6a):                                      Solve    X2  + 4X + (5, 12, 13) = (0, 0, 0).                                k = 4, a = 5
(k > 0 , a > 0)
                                                  (x, y, z)2  +  4(x, y, z)  + ( 5, 12, 13)  =  (0, 0, 0).
 
     If x > 0, we get                    (x2, _ , _ ) + ( 4x + 3, _ , _ ) + ( 5, _, _ )  =  O
                                      
                                                       (x2 + 4x + 3 + 1, _ , _ ) + ( 5, _ , _ )   =  O.
 
     By rule 3a) for addition, the sum of the two a-values of these triples must equal zero, so (x2 + 4x + 4) + 5 = x2 + 4x + 9 = 0.   Since this auxiliary equation cannot be factored in integers, we get no solution for x > 0.
 
     If x < 0, we get                    (x2, _ , _ ) + ( 4x – (|4| - 1), _ , _ ) + ( 5, _ , _ )  =  O.         Adding the first and
 
third triples gives us                          (x2 + 5 + 1, _ , _ ) + (4x - 3, _ , _ )   =   O.  
 
     Again, by rule 3a), the sum of the two a-values of these triples must equal zero, so 
    (x2 + 5 + 1) + (4x – 3)   =  x2 + 4x + 3  =  (x + 1)(x + 3)  =  0.    Thus, x  =  - 1 or  x  =  - 3, and we have
 
                                                              X = ( - 1, 0, 1)   and   X = ( - 3, 4, 5).
 
Example 6b):                               Solve    X2  – 4X + (5, 12, 13) = (0, 0, 0).                            k =  - 4,  a = 5
(k < 0, a > 0)
                                                (x, y, z)2  – 4(x, y, z) + (5, 12, 13) = (0, 0, 0).
 
     If  x > 0, we get                      (x2, _ , _ ) +  (- 4x - 3, _ , _ ) + (5, _, _ )  =  O.        Adding the first and third
 
triples gives us                                (x2 + 5 + 1, _ , _ ) +  ( - 4x - 3, _ , _ )  =  O, 
 
or                                      X2 + 5 + 1 + ( - 4x - 3)  =  x2 - 4x + 3  =  (x – 1)(x – 3)  =  0.  Thus, x  =  1 or x  =  3
 
and we have                                             X = (1, 0, 1)    and   X = (3, 4, 5).
 
     If x < 0, then - 4X will be a positive triple, and  X2 – 4X + (5, 12, 13)  will be a sum of three positive triples and thus cannot equal the zero triple O. So, there is no solution for x < 0
 
Example 6c):                             Solve    X2  + 4X – (25, 312, 313) = (0, 0, 0).                         k = 4,  a = - 25
(k > 0, a < 0)
                                                (x, y, z)2  + 4(x, y, z) – (25, 312, 313) = (0, 0, 0).
 
     If x > 0, we get                   (x2, _ , _ ) + ( 4x + 3, _ , _ ) + ( - 25, _ , _ ) = O.             Adding the first and
 
second triples gives us             (x2 + 4x + 3 + 1, _ , _ ) + ( - 25, _ , _ )   = O,  
 
or                          X2 + 4x + 4 + ( - 25)  =  x2 + 4x - 21  =  (x – 3)(x + 7)  =  0.  Thus, x  =  3 or x  =  - 7.
 
Since x must be positive, we discard  x = - 7 to get   X = (3, 4, 5).
 
     If x < 0, we get                           (x2, _ , _ ) + ( 4x - 3, _ , _ ) + ( - 25, _, _ )  =  O.
 
Since   4x - 3 is negative (x < 0), adding the second and third triples gives us
 
                                 (x2, _ , _ )  + (4x – 3 – 25 – 1 , _ , _ )   =  O,   or    x2 + 4x – 29  =  0.
 
Since this auxiliary equation cannot be factored in integers, we get no solution for x < 0.
 
Example 6d):                 Solve      X2  – 4X – (25, 312, 313) = (0, 0, 0).                                k = - 4, a = - 25
(k < 0, a < 0)
                                             (x, y, z)2  – 4(x, y, z) + ( - 25, 312, 313) = (0, 0, 0).
 
    If x > 0, we get                   (x2, _ , _ ) + ( - 4x - 3, _ , _ ) + ( - 25, _, _ ) = O
      
                                (x2, _ , _ ) + ( - 4x – 3 – 25 - 1, _ , _ )   = O,   or    x2 – 4x – 29  =  0.
 
 This auxiliary equation cannot be factored in integers, so we get no solution for x > 0.
 
     If x < 0, we get                  (x2, _ , _ )  –  ( 4x - 3, _ , _ )    + ( - 25, _, _ )  =  O
 
                                               (x2, _ , _ ) +  ( - 4x + 3, _ , _ ) + ( - 25, _, _ )  =  O
 
Since   - 4x + 3 is positive (x < 0), adding the first two triples gives us
 
                                                    (x2 - 4x + 3 + 1, _ , _ ) + ( - 25, _ , _ )   =  O,
 
   or    x2 – 4x + 4 – 25  =  x2 – 4x – 21  =  (x – 7)(x + 3)  =  0. Thus, x  =  7 or x  =  - 3.
 
Since x must be negative, we discard x = 7 and use x = - 3 to get     X = ( - 3, 4, 5).
 
    Of course we can check any of these solutions. Let’s check the solution for 6d).    Since   X  =  ( - 3, 4, 5), 
 
then            X2  – 4X – (25, 312, 313)  =  ( - 3, 4, 5)2  –  4( - 3, 4, 5)  –  (25, 312, 313) 
                                 =  (9, 40, 41) + (15, _ , _ )  –  (25, 312, 313)    =   (0, 0, 0). Ö
 
                                           c) Triple Quadratic Equations X2 + AX + B = O
 
     We shall now apply our general method to solving those Pythagorean triple equations in which the coefficient of X is a Pythagorean triple rather than a scalar; namely, an equation of the form  X2 + AX + B = O, where A and B are complete triples. 
 
Example 7.  Solve  X2 + (7, 24, 25)X – (17, 144, 145) = O.                          Letting X = (x, y, z), we have
 
                                               (x, y, z)2 + (7, 24, 25)(x, y, z) – (17, 144, 145)  =  O,
 
     If x > 0, we get                     (x2, _ , _ ) + (7x, _ , _ ) + ( - 17, _ , _ )  =  O,
 
                                                      (x2 + 7x + 1, _ , _ ) + ( - 17, _ , _ )  =  O,
 
and by rule 3a), we have   x2 + 7x + 1 + ( - 17)  =  x + 7x – 16  =  0, which is not factorable in integers, and thus there is no solution for x > 0.
 
     If x < 0, we get                       (x2, _ , _ ) + (7x, _ , _ ) + ( - 17, _ , _ )  =  O,      and adding the second and third triples, since both 7x and – 17 are negative, we have
      
                                                            (x2, _ , _ ) + (7x - 17 - 1 , _ , _ )  =  O.
 
By rule 3a), we get   x2 + (7x – 17 – 1)  =  x + 7x – 18  =  (x + 9)(x – 2)  =  0, so    x  =  - 9 or x  =  2.   Since x must be negative, we discard x  =  2 to get     X = ( - 9, 40, 41).
 
Check:                            ( - 9, 40, 41)2  +  (7, 24, 25) ( - 9, 40, 41)  -  (17, 144, 145)
           =  (81, _ , _ ) + ( - 63, 1984, 1985) + ( - 17, 144, 145)  =  (81, 3280, 3281) + ( - 63 – 17 – 1, _ , _ ) 
                                     =   (81, 3280, 3281)  + ( - 81, 3280, 3281)  =  (0, 0, 0). Ö
 
     Now, if X  =  (x, y, z), A  =  (a1, b1, c1), and B  =  (a2, b2, c2), then  X2 + AX + B  =  O becomes     
     
                                       (x, y, z)2  +  (a1, b1, c1) (x, y, z)  +  (a2, b2, c2)  =  (0, 0, 0),
 
or                                             (x2, _ , _ )  +  (a1x, _ , _ )  +  (a2, b2, c2)  =  (0, 0, 0).                                              (1)
 
Since we do not know whether a2 is positive or negative, when we add the first and third triples together, we shall get either (x2 + a2 + 1, _ , _ )  or  (x2 + a2 – 1, _ , _ ).                Thus, (1) becomes
 
                                             (x2 + a2 ± 1, _ , _ )  +  (a1x, _ , _ )   =  (0, 0, 0),            and using rule 3a),
we get                                                       x2  +  a1x  + a2   ±  1  =  0.                                                                        (2)
 
Now, if (2) is factorable, we have    x2 + a1x + a2   ± 1 =   (x – r1)(x – r2) for some integers r1 and r2.   Multiplying out the right-hand side of the last equation, we get     
 
                                                   x2  +  a1x  +  a2  ±  1  =   x2  –  r1x  –  r2x  +  r1r2 .          
 
 Equating the coefficients of x gives us  a1 = – r1  – r2 = - (r1 + r2).   Now a1 is odd, so r1 and r2 must be of opposite parity (one odd and one even). So, only one root x of equation (2) will be odd, and thus X2 + AX + B = O will have only one solution X.    Thus, we have
 
                                                                        Solving X2 + AX + B = O
 
            To solve   X2 + AX + B = O for X, where X  =  (x, y, z), A  =  (a1, b1, c1), and B  =  (a2, b2, c2) are all complete triples, simply replace each triple by its components to get
                                        (x, y, z)2  +  (a1, b1, c1)(x, y, z)  +  (a2, b2, c2)   =   (0, 0, 0)
 
                                              (x2, _ , _ )  +  (a1x, _ , _ )  +  (a2, _ , _ )  =  (0, 0, 0). 
 
Then, considering the cases where x > 0 and x < 0, and using the appropriate rules for the addition and subtraction of complete Pythagorean triples, solve the resulting quadratic equation for integral x, if possible. Then, since X is complete, y = (x2 – 1)/2, and z = y + 1, and there will be at most one solution.
_____________________________________________________________________________________________
 
  
                                   3. Complete Pythagorean Triples and Vector Spaces
 
     It is of some interest to note that the set V of all complete Pythagorean triples together with the zero triple O and the operations of addition and of scalar multiplication for integers as defined above forms a vector space. Listed below are the ten axioms of a vector space and the proofs that V satisfies them. In 7, 8, and 9 below, only one or two of the possible cases are proved. The rest are easily proved in a similar manner.
 
    Let A , B, and C be either complete Pythagorean triples or the zero triple O. Then,
 
1. If A and  B are in V,  then A + B is in V.    Parts b) and c) of the definition of addition above ensure us that if
A and B are complete triples or the zero triple O, then A + B is either a complete triple  (c = b+1)  or  O. Thus, A + B is in V.
 
2.   A + (B + C)  =  (A + B) + C.  In finding the a-values for the sums  A + (B + C)  and  (A + B) + C, we are simply adding integers, and the set of integers satisfies the associative axiom. Thus, A + (B + C)  =  (A + B) + C.
 
3. A + B  =  B + A.  Since rules 1, 2, 4, and 5 for addition all involve a1 + a2, which equals a2 + a1, then
A + B = B + A.
 
4. There is a triple O in V such that A + O = O + A = A for any triple in V.  The triple O is  (0, 0, 0),  which is in V.
Rule 3 for addition shows that  A + O  =  A  for any complete triple A and that  O + O = O.  Axiom 3 above shows that A + O = O + A. 
 
5. If A is in V, then there is a triple  - A in V, such that A + ( - A)  =  O.   If A = (a, b, c) is a complete triple, then
let  - A be ( - a, b, c), and Rule 3a) for addition shows that  A + ( - A)  = (a, b, c)  +  ( - a, b, c)  =  (0, 0, 0) = O.          
  
6.   If k is an integer, then kA is in V.   By the rules of scalar multiplication, if k ¹ 0, kA is a complete triple (c = b + 1) and thus in V, and if k = 0, kA = O, which is in V. Thus, kA is in V.
 
7.   If k and m are integers, then k(mA)  =  (km)A)
 
     a)  If k, m, a > 0, then   k(mA) = k [m(a, b, c)] =   k (ma + (m – 1), __ , __ )
                                                     = ( k(ma + m – 1) + (k – 1), __ , __ )  = (kma + km – 1, __ , __ ),                       (1)
                                  
           and                          (km)A = (km)(a, b, c) = ( (km)a + (km – 1), __ , __ )
                                                      = ( kma + km – 1, __ , __ ).                                                                                 (2)
    
      Since (1) and (2) are identical, we have (km)A = k(mA) for k, m, a > 0.
 
     b) If k, a < 0, m > 0, then   k(mA) = k [m(a, b, c)] =   k (ma – (m – 1) , __ , __ )  
 
         We know that < 0, but to carry out the scalar multiplication above, we must also know the sign of  
         ma – (m – 1). Now, ma is negative, since a is negative and m is positive. Also, m ³ 1, since m is a
         positive integer, so m – 1  ³  0. Thus, ma, a negative integer, is less than m – 1, a non-negative
         integer, or     ma  <  m –1.      Subtracting m – 1 from both sides of this last inequality gives us           
         ma – (m – 1) < 0,   so    ma – (m – 1) is negative. Thus, 
 
                                        k (ma – (m – 1) , __ , __ )   = ( k(ma – m + 1) + (|k| – 1), __ , __ ),                    
        
          and since |k| = – k if k < 0,                                =  (kma – km + k + ( – k – 1), __ , __ )  
                                                                                    =          (kma – km – 1, __ , __ ).                                           (3)
 
           Since km < 0,     (km)A  =  (km)(a, b, c)  =  ( (km)a + (|km| – 1), __ , __ )
                                                  = ( kma + (– km – 1, __ , __ )  =  (kma – km – 1, _ , _ ).                                        (4)   
 
         Now (3) and (4) are identical, so we have (km)A = k(mA) for k, a < 0, m > 0.
 
8. If k and m are integers, then (k + m)A = kA + mA.
 
    a) If k, m, a > 0, then   (k + m)A  =  (k + m)(a, b, c)  =  ( (k+m)a + (k+m) – 1, _ , _ )
                                                        =  (ka + ma + k + m – 1, _ , _ ),                                                                         (5)
 
        and kA + mA  =  k(a, b, c) + m(a, b, c)  =  (ka + (k – 1), _ , _ ) + (ma + (m – 1), _ , _ )
                               =  (ka + (k – 1) + ma + (m – 1) + 1, _ , _ )  =  (ka + ma + k + m – 1, _ , _ )                              (6)
 
     Since (5) and (6) are identical, we have (k + m)A = kA + mA for k, m, a > 0.
 
.    b) If k, m, a < 0, then   (k + m)A = (k + m)(a, b, c) = ( (k+m)a + (|k+m|– 1), _ , _ )
                                                        = (ka + ma + ( - (k + m) – 1, _ , _ ) = (ka + ma – k – m – 1, _ , _ )                   (7)
  
     and                             kA + mA =  k(a, b, c) + m(a, b, c)
                                                       = (ka + (|k| – 1), _ , _ ) + (ma + (|m| – 1), _ , _ )
                         = (ka + ( - k – 1) + ma + ( - m – 1) + 1, _ , _ ) =   (ka + ma – k – m – 1, _ , _ )                               (8)
    
     Since (7) and (8) are identical, we have (k + m)A = kA + mA for k, m, a < 0.
 
9. If k is an integer, then k(A + B) = kA + kB
 
     a) If k, a, d > 0, then   k(A + B) =  k[(a, b, c) + (d, e, f)]  =  k(a + d + 1, _ , _ )
                                                       = ( k(a + d + 1) + (k – 1), _ , _ )  = (ka + kd +2k – 1, _ , _ )                                (9)
   
       and kA + kB   =   k(a, b, c) + k(d, e, f) = (ka + (k – 1), _ , _ ) + (kd + (k – 1), _ , _ )
                             =   (ka + (k – 1) + kd + (k – 1) + 1, _ , _ )  =   (ka + kd + 2k + 1, _ , _ )                                      (10)
    
        Since (9) and (10) are identical, we have k(A + B) = kA + kB for k, a, d > 0.
 
     b ) If k, d > 0, a < 0, |a| < d, then k(A + B)  =   k[(a, b, c) + (d, e, f) ]   =   k( a + d – 1, _ , _ ).
        
          To carry out this multiplication, we must know whether a + d – 1 is positive or negative. Since  |a| < d,
          then                                   - d   <   a   <  d,                            and adding d – 1 to this inequality gives us
                                    - d + d – 1  <  a + d – 1  <   d + d – 1,        
          or                                  -1   <  a + d – 1   <  2d – 1,
 
          showing us that a + d – 1  is greater than - 1 and so not negative. Thus,
 
                     k(A + B)  =    k(a + d – 1, _ , _ )     =  ( k(a + d – 1) + (k – 1), _ , _ )  =  (ka + kd – 1, _ , _ ).             (11)
       
          Now,   kA + kB   =   k(a, b, c) + k(d, e, f)   =   (ka – (k – 1), _ , _ )  +   (kd + (k – 1), _ , _ ).                          (12)
 
      Since the a-values of the first and second triples are negative and positive, respectively, in order to
    find their sum, we must know whether |ka – (k-1)| is greater or less than kd + (k-1).    We have
  
                                                                     - d   <   a   <   d
 
                                                                   - kd   <  ka   <   kd
 
                                                - kd  –  (k-1)  <   ka  –  (k-1)  <   kd  –  (k-1)
 
                                                - kd  –  (k-1)   <   ka  –  (k-1)   <   kd  +  (k-1)
              
                                                - [kd + (k-1)] <   ka  –  (k-1)  <   kd + (k-1)
 
                                                                           |ka – (k-1)|  <  kd + (k-1).
 
    Thus, the absolute value of the negative a-value of the first triple is less than the positive
    a-value of the second triple, and we get  from (12),       
 
                                   kA + kB   =  (ka – (k – 1), _ , _ ) + (kd + (k – 1), _ , _ )    
                                                                                 
                                                  =   (ka + kd – 1, _ , _ ).                                                                                          (13)
 
    Since (11) and (13) are identical, k(A + B) = kA + kB for k, d > 0, a < 0, |a| < d
 
10. 1A = A.  From the table for scalar multiplication on page 9, we have that
 
                          If a > 0, then 1A = 1(a, b, c)  =  (1a + (|1| - 1), _ , _ )  =  (a, b, c)   =   A.  
 
                          If a < 0, then 1A = 1(a, b, c)  =  (1a – (|1| - 1), _ , _ ) = (a, b, c)  =  A. 
 
                          If a = 0, then 1A  = 1(0,0,0)   =   (0, 0, 0)  =  A. 
 
     Thus, 1A = A.
 
Thus, the ten axioms are satisfied, and V is a vector space.
 
 
                                                        4. Some Notable Patterns
 
                                                                   The 3 - 4 - 5 Pattern
 
In looking at a table of primitive Pythagorean triples, one might notice a rather interesting pattern in those complete triples whose a-values all end in the digit 3. Here is a list.
 
                                                       a            b            c             m      n
                                                ---------------------------------------------------------     
                                                       3            4            5             2       1
                                                     13          84          85             7       6
                                                     23        264        265           12     11
                                                     33        544        545           17     16
                                                     43        924        925           22     21
 
     Note that the last digit of the a-values is always 3, the last digit of the b-values is always 4, and the last digit of the c-values is always 5. Thus, the 3, 4, 5 pattern is preserved in each of these triples whose a-values end in 3. Now, why is this?
 
     Well, first we notice that the m-values start at 2 and then increase by 5 as we proceed from one triple to the next in the list; thus, m = 2 + 5k for k = 0, 1, 2, . . . , and n is always one less than m, so that n = 1 + 5k.
  
     Now, b = 2mn, so we get 
 
               b  =  2mn  =  2(2 + 5k)(1 + 5k)  =  2(25k2 + 15k + 2)  =  50k2 + 30k + 4  =  10(5k2 + 3k) + 4.                         
  
     Now 10 times any integer always yields an integer whose last digit is zero, so 10(5k2 + 3k) will be an integer whose last digit is zero. Adding 4 to this integer then gives us an integer whose last digit is 4. Thus, the last digit of b will always be 4.   Since all of these triples are complete, then c is always one more unit than b, so the last digit of c will always be 5.    This gives us
                          
                                                                        The 3 - 4 - 5 Pattern
 
                                        If the a-value of a complete Pythagorean triple ends in a 3,
                                       then its b- and c-values will end in a 4 and a 5, respectively.
                                       __________________________________________________
 
     It is interesting to note that those digits preceding the 4’s or 5’s in the table above form two identical series,
  
namely,                                                                   8, 26, 54, 92, . . .
 
                                                                         The  5 -12 -13 Pattern
 
     Look at the following list of Pythagorean triples.
 
                                                                 a          b           c           m      n      
                                                            --------------------------------------------------
                                                                 5         12         13           3        2
                                                               15       112       113           8        7 
                                                               25       312       313         13      12
                                                               35       612       613         18      17
                                                               45     1012     1013         23      22
                                                               55     1512     1513         28      27
                                                               65     2112     2113         33      32
                                                               75     2812     2813         38      37
 
     Note that the last digit of the a-values is always 5, the last two digits of the b-values are always 12, and the last two digits of the c-values are always 13. Thus, the 5, 12, 13 pattern is preserved in each of these triples whose a-values end in 5. Now, why is this?
 
     Well, first we notice that the m-values start at 3 and then increase by 5 as we proceed from one triple to the next in the list; thus, m = 3 + 5k for k = 0, 1, 2, . . . , and n is always one less than m, so that n = 2 + 5k. 
 
Now b = 2mn, so we get
 
            b  =  2mn  =  2(3 + 5k)(2 + 5k)  =  2(25k2 + 25k + 6)  =  50k2 + 50k + 12  =  50k(k+1) + 12.                              
 
Now either k is even or odd.
 
     If k is even, then k = 2r for some integer r, and we have
 
                                    b  =  50k(k+1) + 12  =  100r(2r+1) + 12.
 
Since 100 times any integer always yields an integer whose last two digits are zero, then 100r(2r+1) will be an integer whose last two digits are zero. Adding 12 to this integer then gives us an integer whose last two digits are 12. Thus, the last two digits of b will always be 12 if k is even.    
 
     If k is odd, then k = 2r + 1 for some integer r, and we have
 
                               b  =  50k(k+1) + 12  =  50(2r + 1)(2r + 2) + 12  =  100(2r + 1)(r + 1) + 12. 
 
As before, 100 times any integer always yields an integer whose last two digits are zero, so 100(2r + 1)(r + 1) will be an integer whose last two digits are zero. Adding 12 to this integer then gives us an integer whose last two digits are 12. Thus, the last two digits of b will again always be 12 if k is odd.
 
     Thus, in either case, the last two digits of b will be 12. Since all of these triples are complete, then c is always one more unit than b, so the last two digits of c will always be 13. This gives us
 
                                                                      The 5 -12 -13 Pattern
 
                                           If the a-value of a complete Pythagorean triple ends in a 5,
                                          then its b- and c-values will end in a 12 and 13, respectively.
                                          _________________________________________________
 
 
Example 1. If the a-value of a complete triple is 135, determine if its  b -  and  c - values end in 12 and 13, respectively.    Since the triple is complete, then b  =  (a2 – 1)/2  =  (1352 – 1)/2  =  9112, which ends in 12, and
c  =  b + 1  =  9113, which ends in 13.    
 
     It is interesting to note that those digits preceding the 12’s or 13’s in the table above form the well-known sequence of triangular numbers     0, 1, 3, 6, 10, 15, 21, 28.    How appropriate!
 
                   5. Generating Pythagorean Triples from the Fibonacci Sequence
 
     The Fibonacci sequence is made up of positive integers whose first two terms are a1 = 1 and a2 = 1 and whose succeeding terms are defined by    an+2  =  an + an+1  for n  ³  1. Thus, we get
 
                                                     1,   1,   2,   3,   5,   8,   13,   21,   34,   55,   .   .   . 
 
as the Fibonacci sequence. Let’s look at its first four terms:   1,   1,   2,   3, and see if we can’t generate the Pythagorean triple (3, 4, 5) from them. 
 
     First, If we multiply the first and last terms together, we get 1(3) = 3, which is the a-value of (3, 4, 5). So far, so good.   Next, If we multiply the two middle terms together, we get 1(2) = 2, which when doubled gives us 4, the
b-value of (3, 4, 5). Not bad!  But how can we get the c-value of 5? Well, since c = m2 + n2, a sum of two squares, let’s find the sum of the squares of the two middle terms, 12 + 22, which gives us 5, the c -value of (3, 4, 5), and we’re done! 
 
     We’ve generated a primitive Pythagorean triple from a 4-term Fibonacci sequence by using
 
a)      the product of the first and last terms (product of the extremes) as the a-value,
b)      twice the product of the middle terms (twice the product of the means) as the b-value, and
c)      the sum of the squares of the middle terms (sum of the squares of the means) as the c-value. 
 
     Will this procedure yield other primitive triples?  Let’s see.                                                                                                   
 
     Consider the second through the fifth terms of the Fibonacci sequence 1,   2,   3,    5. 
 
a)      The product of the extremes is  1(5)  =  5, our a-value.
b)      Twice the product of the means is  2(2)(3)  =  12, our b-value, and
c)      the sum of the squares of the means is  22 + 32  =  13, our c-value,
 
and we have generated the primitive triple (5, 12, 13). Nice!
    
     Alas, when we apply this procedure to the third through the sixth terms of the Fibonacci sequence 
 
                                                                           2,   3,   5,   8, 
 
we do NOT get a primitive Pythagorean triple. Here’s what happens.
 
     The product of the extremes is 2(8) = 16 for the a-value; twice the product of the means is 2(3)(5) = 30 for the
b-value, and the sum of the squares of the means is 32 + 52 = 34 for the c-value, giving us (16, 30, 34), which is not even primitive because each of its members has a factor of 2.  Removing this factor of 2, we get (8, 15, 17), a primitive Pythagorean triple, although its a - and b - values are interchanged. Reversing these values, we get
(15, 8, 17), an inverted primitive Pythagorean triple. Now, what’s happening here?  
 
     Well, since the first term, 2, is even, the product of the extremes is even, giving us an even rather than an odd integer for a. Furthermore, twice the product of the means gives us an even integer for b, and thus a and b have a common factor of 2, making the resulting triple non-primitive, and requiring us to divide by 2.   
 
     So whenever the first term in a 4-term Fibonacci sequence is even, we shall modify the procedure above by
 
                                       a) taking half the product of the extremes,
                                       b) taking half of twice the product of the means,
                                       c) taking half the sum of the squares, and then
                                       d) interchanging the values of a and b.
 
Then, the a-value will be half of twice the product of the means (or simply the product of the means), the b-value will be half the product of the extremes, and the c-value will be half the sum of the squares of the means
 
     Applying this procedure to 2, 3, 5, 8 we get the
 
                              a) product of the means is 3(5) = 15 for the a-value,
                              b) half the product of the extremes is (1/2)(2)(8) = 8 for the b-value, and
                              c) half the sum of the squares of the means is (1/2)(32 + 52) = 17 for the c-value,
 
generating the inverted primitive triple (15, 8, 17).   Let’s look at some examples.
 
                4 - term Fibonacci
                      sequence                         Triple                                           Procedure
           ------------------------------------------------------------------------------------------------------------------------------
                    1,   1,   2,   3             a = 1(3)        =   3                      (product of the extremes)
                                                     b = 2(1)(2)    =   4                (twice the product of the means)  
                   (1st term odd)           c  = 12 + 22   =   5              (sum of the squares of the means)
          
                    1,   2,   3,   5             a = 1(5)         =  5
                                                     b = 2(2)(3)    = 12                             (same as above)
                   (1st term odd)            c = 22 + 32   = 13    
          
                    2,   3,   5,   8             a =       3(5)            = 15                 (product of the means)
                                                     b =    (1/2)2(8)        =  8          (half the product of the extremes)
                  (1st term even)           c = (1/2)(32 + 52)   = 17            (half the sum of the squares of
                                                                                                                  the means)  
                                                                                                                
                    3,   5, 8,  13               a  =    3(13)     = 39                         (product of the extremes)
                                                      b  =   2(5)(8)    = 80                 (twice the product of the means)
                   (1st term odd)            c  =   52 + 82    = 89               (sum of the squares of the means)
 
                   5,   8, 13, 21               a  =   5(21)      = 105                    
                                                      b  = 2(8)(13)    = 208                            (same as above)
                   (1st term odd)             c =  82 + 132  = 233             
     
                   8, 13, 21, 34               a  =     13(21)              = 273                  (product of the means)
                                                      b  =    (1/2)8(34)         = 136          (half the product of the extremes)
                  (1st term even)            c  = (1/2)(132 + 212)  = 305            (half the sum of the squares of
                                                                                                                              the means)  
           ------------------------------------------------------------------------------------------------------------------------------
 
Looking at these examples, it seems that the following is true.
 
                                          Generating Triples from Fibonacci Sequences
 
                  For the four consecutive terms  an,  an+1,  an+2, and  an+3  of a Fibonacci sequence,
                                         (a, b, c) will be a primitive Pythagorean triple if:
 
                        1) an is odd,   and a  =  anan+3,     b  =  2an+1an+2,     and c  =  an+12 + an+22.
 
                             In this case, (a, b, c) will be regular (a < b).        
 
                        2) an is even, and  a  =  an+1an+2,  b  =  (1/2)anan+3,  and c  =  (1/2) (an+12 + an+22).
 
                             In this case, (a, b, c) will be inverted (a > b).
                  __________________________________________________________________________
                                                                                                                                                 
     Let’s prove that (a, b, c) is a Pythagorean triple for case 1) above.
 
From the definition of a Fibonacci sequence, we know that
 
                                                          an+2  =    an + an+1                                                                                     (1a)
                                                                                                                                      
and that                        an+3  =  an+1 +  an+2  =  an+1 +  (an + an+1)  =  an +  2an+1                                           (1b)
 
Using case 1) and (1b), we get
 
                                        a   =   anan+3    =    an(an + 2an+1)    =    an2 +  2anan+1                                              (2a)    
 
   Using case 1) and (1a), we get
 
                                        b   =  2an+1an+2  =  2an+1(an + an+1)   =   2anan+1  +  2an+12,                                     (2b)
 
and                                  c   =  an+12 + an+22   =   an+12 +  (an + an+1)2   =   an2 + 2anan+1 +  2an+12.              (2c)
 
To show that (a, b, c) is a Pythagorean triple, we must show that  a2 + b2 = c2.
 
Using (2a) and (2b), we have
 
                    a2 + b2   =            ( an2 + 2anan+1 )2             +          (2anan+1 + 2an+12 )2
                                  =   an4  +  4an3an+1  +  4an2an+12   +  4an+12an2  +  8anan+13  +  4an+14
                                  =   an4  +  4an3an+1  +  8an2an+12   +  8anan+13  +  4an+14,                                                 (3)
 
and from (2c), we have
 
                        c2      =                        [an2 +  2anan+1 + 2an+12]2
                                  =   an4  +  4an2an+12  +  4an+14  +  2(2an3an+1)  +  2(2an2an+12)  +  2(4anan+13)
                                  =   an4  +  4an2an+12  +  4an+14  +  4an3an+1  +  4an2an+12  +  8anan+13
                                  =   an4  +  4an3an+1  +  8an2an+12  +  8anan+13  +  4an+14.                                                   (4)
 
Since (3) and (4) are identical, we have proved that  a2 + b2 = c2, and thus (a, b, c), as given by case 1), is a Pythagorean triple.
 
     Now, is (a, b, c), as given by case 1), a primitive triple; that is, do a, b, and c have no common factors? Let’s see.
 
 
      Subtracting (2b) from (2c), and then (2a) from (2c), we get
 
                                                 c – b    =    an2                  and                       c – a    =    2an+12.
 
      Now, suppose a, b, and c have a common even factor of k. Then k is a factor of c – b, and since 2 is a factor of k, then 2 is a common factor of c – b and thus a common factor of an2, and so a common factor of an. Thus, an is even, but this is false since in case 1) above, an is odd. Thus, a, b, and c do not have any even common factors.
 
     Suppose a, b, and c have a common odd factor k, and k1 is a prime factor of k. Then, k1 will be odd since there can be no even factors of the odd factor k, and k1 will be a common factor of   c – b and c – a, and so a common factor of an2 and an+12. Since k1 is prime, it is thus a common factor of an and an+1. But this is false, since a common property of a Fibonacci sequence is that an and an+1 have NO common factors. ( Since an+1 = an -1 + an, we can solve for an – 1 to get    an – 1 = an +1 – an . Then, If an and an +1 had a common factor of f, then an -1 would also have a common factor of f for any positive integer n > 2. But this says that if n = 2, then a3 = 2, a2 = 1, and a1 = 1 would all have a common factor (other than 1), which they don’t. So, no two consecutive terms of a Fibonacci sequence have a common factor.) Thus, a, b, and c do not have any odd common factors.
 
     Thus, a, b, and c have no common factors, and (a, b, c), as given by case 1), is a primitive Pythagorean triple.
 
     Finally, is (a, b, c) a regular triple (a < b)?   Since we have a Fibonacci series,
 
                                                   an    <     an+1.                                Squaring both sides of this inequality, we get                              
 
                                                   an2   <     an+12,                              and adding 2anan+1 to both sides gives us     
           
                                 an2 + 2anan+1    <    an+12 + 2anan+1.                                                                                     (5)
 
         From (2a), we see that the left-hand side of (5) is a, so we have
 
                                                     a   <   an+12 + 2anan+1.                                                                                         (6) 
 
Adding an+12  to just the right-hand side of (6), we get
 
                                                           a   <   an+12 + 2anan+1 + an+12,
 
or                                                        a   <   2anan+1 + 2an+12   =   b                                        from   (2b).
 
Thus, we have shown that a < b, and (a, b, c), as given by case 1), is a regular triple.
 
     A similar analysis using case 2) above will show that (a, b, c) is an inverted   (a > b)  primitive Pythagorean triple.
 
Example 1.  For the four-term Fibonacci sequence 13, 21, 34, 55, determine whether the Pythagorean triple generated by this sequence will be regular or inverted, and then find the generated triple. Since the first term is odd, we shall get a regular triple. The product of the extremes gives us a = 13(55) = 715, twice the product of the means gives us b = 2(21)(34) = 1428, and the sum of the squares of the means gives us  c = 212 + 342 = 1597. So the regular primitive Pythagorean triple generated by the four-term Fibonacci sequence above is (715, 1428, 1597).
  
                                          6. Constructing A Triple whose c-value is c2.
 
     If (a, b, c) is a regular primitive Pythagorean triple, then a and b have no common factors, are of opposite parity, and b > a. Thus, we may generate a new primitive Pythagorean triple by using b and a for our values of m and n, and since c2 = b2 + a2, we get
 
                              (m2 – n2, 2mn, m2 + n2)  =   (b2 – a2, 2ba, b2 + a2)  =  (b2 – a2, 2ba, c2).
 
     If (a, b, c) is an inverted primitive Pythagorean triple, then a and b have no common factors, are of opposite parity, and a > b. Thus, we may generate a new primitive Pythagorean triple by using a and b for our values of m and n, and since c2 = a2 + b2, we get
 
                             (m2 – n2, 2mn, m2 + n2)   =   (a2 – b2, 2ab, a2 + b2 )   =   (a2 – b2, 2ab, c2).      Thus,
  
                                  For any primitive Pythagorean triple (a, b, c), there exists a primitive
                                     Pythagorean triple, (|a2 – b2|, 2ab, a2 + b2),  whose c-value is c2.
                                 _______________________________________________________
 
Examples.
 
       (3, 4, 5) is a regular triple, so using m = b = 4 and n = a = 3, we get
 
                                           ( 42 – 32,  2(4)(3),  42 + 32 )  =  (7, 24, 25),
 
 whose c-value, 25 = 52, is the square of the c-value of the original triple (3, 4, 5).
 
      (15, 8, 17) is an inverted triple, so using m = a = 15 and n = b = 8, we get
 
                            ( 152 – 82, 2(15)(8), 152 + 82 )  =  (161, 240, 289),
 
 whose c-value, 289 = 172, is the square of the c-value of the original triple (15, 8, 17).
 
 
                                                                                                                                                                  May 17, 2009
                                                                                       Home