Patterns in Pythagoras
 
3A. Even More Patterns in Right Triangles
and Pythagorean Triples
 
 David W. Hansen
© 2008
 
     In Parts 1 and 2, we discovered many beautiful patterns existing among the sides of primitive right triangles or the members of primitive Pythagorean triples.  But apparently we are not through! There are more patterns to discover than we had previously thought, so c’mon, let’s get to it!
 
1. The Relative Sizes of a, b, and c
 
Table 1
Primitive Right Triangles and Pythagorean Triples
                                           
                                                                     a                   b                 c              Perimeter
                                        m    n                m2 - n2            2mn          m+ n2            a+b+c
                                  --------------------------------------------------------------------------------------------           
                                        2     1                    3                    4                  5                    12
                                        3     2                    5                  12                13                    30
                                        4     1                  15                    8                17                    40
                                        4     3                    7                  24                25                    56
                                        5     2                  21                  20                29                    70
                                        5     4                    9                  40                41                    90
                                        6     1                  35                  12                37                    84
                                        6     5                  11                  60                61                  132
                                        7     2                  45                  28                53                  126
                                        7     4                  33                  56                65                  154
                                        7     6                  13                  84                85                  182
                                        8     1                  63                  16                65                  144
                                        8     3                  55                  48                73                  176
                                        8     5                  39                  80                89                  208
                                        8     7                  15                112              113                  240      
                                        9     2                  77                  36                85                  198               
                                        9     4                  65                  72                97                  234
                                        9     8                  17                144              145                  306
                                      10     1                  99                  20              101                  220
 
     Looking at Table 1 above, we can clearly see that both a and b are always less than c. We would expect this to be true since c represents the length of the hypotenuse of a right triangle, which is always greater than the lengths of each of its two legs. We can also show this by using the formulas from Theorem 5, which was proved in Part 1.
Here’s the theorem.
 
              Theorem 5
 
           Let m and n be positive integers of opposite parity with no common factors and m > n. Then,
           for all primitive Pythagorean triples (a, b, c),   a = m2 - n2,    b = 2mn, and c = m2 + n2.
           __________________________________________________________________________
    
< c        Informally, if   a  <  c,   then          m2 - n2   <   m2 + n2.        Subtracting m2 from both sides of this inequality, we have                                         -  n2       <       n2.             Adding n2 to both sides of this inequality gives us                                                                       0        <      2n2,             which is always true for  n  ¹  0. However, in this proof we assumed that a < c, which is what we are trying to prove! Here is a correct proof. 
  
     Since n  >  0,                                                     0    <   2n2                                 Subtracting n2 from both sides of this
inequality gives us                                               - n2   <    n2.                         Adding m2 to both sides of this
inequality, we get                                         m2  -  n2   <   m2  +  n2,   
or                                                                         a        <         c.
 
b  <  c    Informally, if b < c, then 2mn  <  m2 + n2 ,    0  <  m2  -  2mn  +  n2,   and   0  <   (m – n)2,  which is always true for m  ¹  n.  However, as before, we assumed what we were trying to prove!   Writing our statements above in reverse order, we have                             0  <       (m – n)2,              which is always true for m  ¹  n.
Expanding, we get                                     0  <   m2  - 2mn + n2
Adding 2mn to both sides, we get       2mn   <    m2 + n2,
or                                                              b    <      c.                         Thus, we have proved
                                      
           Theorem 21
 
           In any primitive right triangle or Pythagorean triple (a, b, c), both a < c, and  b < c.
            ____________________________________________________________________________
 
2. Regular and Inverted Triples
 
     Now, what about a and b? In some primitive Pythagorean triples, such as (3,4,5) or (5,12,13), a  <  b. When this occurs, we call these triples regular. In other triples, such as (15,8,17) and (77,36,85), a  >  b, and we call these triples inverted. Let’s see if we can find out just when a primitive Pythagorean triple is regular and when it is inverted.
 
     Regular triples  (a < b).  If a < b, then we have                m2  -  n2           2mn, 
or                                                                                       m2  -   2mn  -  n2   <     0.
Adding 2n2 to both sides of this inequality gives us         m2  -  2mn  +  n2   <   2n2
or                                                                                                 (m - n)2       <    2n2.  
 
Taking the positive square root of this last inequality, we get       m - n      <   nÖ2.
 
Then,                                                      m    <    n + nÖ2   =   n(1 + Ö2)    ≈   2.414n,
or                                                         m/n    <    1 + Ö2     ≈   2.414.
 
Thus, whenever  m/n   <   1 + Ö2    ≈   2.414, our triple is regular
 
     Inverted triples   (a > b).   By reversing the direction of the inequality symbols in the proof above, we can show that whenever   m/n   >  1 + Ö2    ≈   2.414, our triple is inverted.
 
     Theorem 13a in Part 2 tells us that if a = pq, where p and q are odd positive integers (p > q) with no common factors, then m = (p + q)/2 and n = (p - q)/2. Thus,
 
                                                    (p+q/2                p + q
                                m/n    =      ------------     =   -------------    >   1 + Ö2   for an inverted triple.     
                                                    (p - q/2               p – q
 
Multiplying both sides of this last inequality by p – q and reading from left to right, we get
 
                 p + q   > (1 + Ö2)(p - q),        p + q    >   p - q + pÖ2 - qÖ2,                  2q + qÖ2   >   pÖ2,                              
 
               pÖ2     <   (2 + Ö2)q,                      p     <      (2 + Ö2)q /Ö2,                   p     <    ( 2 /Ö2 + Ö2 /Ö2 )q,
  
                                       p     <     (Ö2 + 1)q,             or              p / q   <    1 + Ö2.
 
     Thus, whenever p / q   <   1 + Ö2, the associated triple will be inverted.   In a similar fashion, by reversing the direction of the inequality symbols above, we can show that whenever p / q   > 1 + Ö2, then the associated triple will be regular. All of this gives us the following theorem.
 
           Theorem 22  (Regular and inverted triples)
 
           In a primitive Pythagorean triple P = (a, b, c), if a < b, then P is called regular.
           If a > b, then P is called inverted.
 
                   a)   P will be regular (a < b )  if  m/n  <  (1+Ö2)   ≈  2.414.
 
                   b)   P will be inverted (a > b)   if  m/n  >  (1+Ö2)   ≈  2.414.
 
           If a = pq, where p and q are odd positive integers (p > q) with no common factors, then
 
                   c)   P will be regular (a < b ) whenever   p/q  >  (1+Ö2)   ≈  2.414.
 
                   d)   P will be inverted (a > b)  whenever  p/q  <  (1+Ö2)   ≈  2.414.
           ________________________________________________________________________
 
Example 1Find all inverted primitive Pythagorean triples for m = 13. The possible values for m and n, together with their respective values for m/n, are shown below.
 
                                               m     n            m/n                m      n        m/n
                                            ----------------------------------------------------------------
                                              13     2           6.50                13      8        1.63
                                              13     4           3.25                13    10        1.30
                                              13     6           2.17                13    12        1.08
 
Theorem 22 b) tells us that for an inverted triple, we must have m/n > 2.414, and only the first two sets of m
and n satisfy this requirement.   For m = 13, n = 2, we get (165, 52, 173). For m = 13, n = 4, we get
(153,104, 185), and both triples are inverted ( a > b ).  
 
Example 2Find all regular primitive Pythagorean triples for a =105. The factors for a = 105 together with their respective values for p/q are shown below.
 
                                                 p      q            p/q                    p      q         p/q
                                            --------------------------------------------------------------------
                                             105     1           105                   21      5        4.20
                                               35     3          11.67                 15      7        2.14
 
For a regular triple, we must have p/q > 2.414, and the first three sets of p and q satisfy this requirement. Using Theorem 13b from Part 2, we get for
 
      p = 105,  q = 1,     b  =  (1052 – 12 )/2,   c  =  (1052 + 12 )/2,   giving us                             (105, 5512, 5513),
 
      p =   35,  q = 3,     b  =    (35– 32 )/2,   c  =    (352 + 32 )/2,   giving us                               (105, 608, 617),
 
      p  =  21,  q = 5,     b  =     (212 – 52 )/2,  c  =    (212 + 52 )/2,   giving us                               (105, 208, 233).
 
     1.  Does every value of a belong to at least one regular triple? Yes, and here’s why. Any a can be written as  a = pq = a(1). Then p = a, q = 1, p/q = a/1 = a  ³  3 > 2.414. Thus, by Theorem 22 c), a is a member of a regular triple.
 
     2. Does every value of a belong to at least one inverted triple?  No.   3, 5, and 49 are examples of values of a for which no inverted triples exist, since the only way to write these values as a product of two factors p and q with no common factors is 3 = 3(1), 5 = 5(1), and 49 = 49(1), and in each of these cases, the ratio p/q is greater than 2.414. Thus, by Theorem 22 d), they cannot be members of an inverted triple. In fact, if a is a prime or a power of a prime, then a cannot be a member of an inverted triple. Let’s see why.
   
     Let a be a power of an odd prime P. Then a = Pk, where k is a positive integer. The only way to factor a into a product of two factors p and q with no common factors is a = Pk(1), since any other factorizations, such as
Pk – 3(P3), will all have a common factor of some power of P. Thus, a = pq = Pk(1) has only one distinct prime factor; namely, P, so by Theorem 14 of Part 2, a is a member of only one triple. By Theorem 22 c), this triple will be regular if  p/q  >  2.414. Now, p/q = Pk / 1 =  Pk.    Since k  ³  1 and   P  ³  3, then Pk must be greater than or equal to 3.  Thus, p/q  ³  3  >  2.414, and the triple is regular. Furthermore, this triple is complete (c = b + 1), since for
a  =  pq  =  Pk(1), we have
 
               m    =    (p + q)/2    =    (Pk + 1) / 2        and        n   = (p - q)/2    =    (Pk - 1) / 2.
 
Then,                                   b   =   2mn  =   2 (Pk + 1)/2 (Pk - 1)/2    = (P2k – 1)/2,                                            (1) 
 
and                                      c   =   m2 + n2   =        [ (Pk + 1)/2 ]2  + [ (Pk - 1)/2 ]2
                                                                      =   ( P2k + 2Pk + 1 +   P2k - 2Pk + 1 ) / 4
                                                                      =         (2P2k + 2) / 4  =   (P2k + 1) / 2.                                           (2)
 
     Now, from (1),   b + 1 = (P2k – 1)/2 + 1 =   (P2k – 1)/2 + 2 /2    =    (P2k + 1) / 2    =   c.                      [ from (2) ]
   
So, c = b + 1, and the triple is complete. All of this gives us
                                                    
         Theorem 23
 
         All a’s are members of at least one regular primitive Pythagorean triple.   If a is a power of an odd
         prime, then it is a member of one and only one triple, which is both regular and complete, and it
         cannot be a member of any inverted primitive Pythagorean triple.
         _______________________________________________________________________________
 
     Theorem 23 tells us that all a’s are members of at least one regular primitive Pythagorean triple, whereas not all a’s are members of inverted ones. In this sense, we may say that there are more regular triples than inverted triples.
 
     3. Are there any a’s which belong to more than one inverted triple? For a = pq to be a member of an inverted triple, p/q must be small; that is, p/q must be less than 2.414. To accomplish this, we must have factors p and q which are close to each other in size, so that p/q will be small.   Now a =  pq = 33 can be written only as 33(1) and 11(3), but in both of these cases, p and q are not close to each other in size, and thus p/q is larger than 2.414.
(33/1 = 33, and 11/3 = 3.67.) But if we try, a = 11(13)(17)(19) = 46,189, whose prime factors are all close together in size, we can get values for p and q which are also all close in size, giving us the following:
 
                                                               a = 11(13)(17)(19) = 46,189
 
         Factors chosen for                                                     m          n
                  p          q                      p        q            p/q     (p+q)/2   (p-q)/2             a            b           c
     ------------------------------------------------------------------------------------------------------------------------------------
             13(17)    11(19)              221    209         1.06        215        6              46,189     2,580    46,261
             13(19)    11(17)              247    187         1.32        217      30              46,189   13,020    47,989
             17(19)    11(13)              323    143         2.26        233      90              46,189   41,940    62,389
 
Thus, a = 46,189 is a member of three inverted primitive Pythagorean triples! So, yes, there are some a’s which belong to more than one inverted triple.
 
     Now suppose that P = (a, b, c) is a complete (c = b + 1) primitive Pythagorean triple. Will it be a regular or inverted triple, or perhaps sometimes a regular and sometimes an inverted triple? Let’s see. Theorem 6 in Part 1 tells us that if P is complete, then m = n + 1. To see if P is regular or inverted, let’s calculate the value of                           
                                                           m/n    =    (n+1)/n   =    1 + 1/n.
 
  We know that    n ³ 1. Dividing both sides of this inequality by n, we get   1 ³ 1/n.   Adding 1 to both sides of this inequality gives us   2   ³   1 + 1/n,   or    1 + 1/n  £  2. Thus, m/n = 1 + 1/n   £   2  <  2.414, and by Theorem 22 a),
P is a regular triple. This gives us 
 
             Theorem 24
 
              Every complete primitive Pythagorean triple is regular. 
              ___________________________________________
 
     The converse of Theorem 24 (if P is a regular triple, then P is complete) is false, since (39, 80, 89) is regular
(a < b), but not complete; that is, c ¹ b + 1.
 
3. Proper Primitive Pythagorean Triples
 
     In the very first primitive Pythagorean triple; that is, the smallest one, (3,4,5), a is divisible by 3, b is divisible by 4, and c is divisible by 5. This is an example of a proper primitive Pythagorean triple; namely, a triple in which a is divisible by 3, b is divisible by 4, and c is divisible by 5.   (5,12,13) is not  a proper triple, since a is not divisible by 3 and c is not divisible by 5. (63,16, 65) and (153,104,185) are both proper Pythagorean triples. Are there others?
     To find out, let’s construct a table of primitive Pythagorean triples showing the values of b = 2mn  in ascending order, together with b/2 = mn, and m and n.
 
Table 2
         
                                     b     b/2          m   n            a          b          c             Proper? Why not?
                              ------------------------------------------------------------------------------------------------------------
                                     4       2           2    1             3         4           5             yes
                                     8       4           4    1           15         8         17              no (c not divisible by 5)
                                   12       6           6    1           35       12         37              no (c not divisible by 5)
                                                           3    2             5       12         13              no (c not divisible by 5)
                                   16       8           8    1           63       16         65             yes
                                   20     10         10    1           99       20       101              no (c not divisible by 5)
                                                           5    2           21       20         29              no (c not divisible by 5)
                                   24     12         12    1         143       24       145              no (a not divisible by 3)
                                                           4    3             7       24         25              no (a not divisible by 3)                         
                                   28     14         14    1         195       28       197              no (c not divisible by 5)
                                                           7    2           45       28         53              no (c not divisible by 5)
                                   32     16         16    1         255       32       257              no (c not divisible by 5)
                                   36     18         18    1         323       36       325              no (a not divisible by 3)
                                                           9    2           77       36         85              no (a not divisible by 3)
                                   40     20         20    1         399       40       401              no (c not divisible by 5)
                                                           5    4             9       40         41              no (c not divisible by 5)
                                   44     22         22    1         483       44       485             yes
                                                         11    2         117       44       125             yes   
                                   48     24         24    1         575       48       577              no (a not divisible by 3)
                                                           8    3           55       48         73              no (a not divisible by 3) 
                                   52     26         26    1         675       52       677              no (c not divisible by 5)
                                                         13    2         165       52       173              no (c not divisible by 5)
                                   56     28         28    1         783       56       785             yes
                                                           7    4           33       56         65             yes
                                   60     30         30    1         899       60       901              no (c not divisible by 5)
                                                         15    2         221       60       229              no (c not divisible by 5)
                                   64     32         32    1       1023       64     1025             yes
                                   68     34         34    1       1155       68     1157              no (c not divisible by 5)
                                                         17    2         285       68       293              no (c not divisible by 5)
                                   72     36         36    1       1295       72     1297              no (a not divisible by 3)
                                                           9    4           65       72         97              no (a not divisible by 3)
                                   76     38         38    1       1443       76     1445             yes
                                                         19    2         357       76       365             yes
                                   80     40         40    1       1599       80     1601              no (c not divisible by 5)
                                                           8    5           39       80         89              no (c not divisible by 5)
                                   84     42         42    1       1763       84     1765              no (a not divisible by 3)
                                                         21    2         437       84       445              no (a not divisible by 3)
                                                         14    3         187       84       205              no (a not divisible by 3)
                                                           7    6           13       84         85              no (a not divisible by 3)
                                   88     44         44    1       1935       88     1937              no (c not divisible by 5)
                                                         11    4         105       88       137              no (c not divisible by 5)                
                                   92     46         46    1       2115       92     2117              no (c not divisible by 5)
                                                         23    2         525       92       533              no (c not divisible by 5)
                                   96     48         48    1       2303       96     2305              no (a not divisible by 3)
                                                         16    3         247       96       265              no (a not divisible by 3)
                                 100     50         50    1       2499     100     2501              no (c not divisible by 5)
                                                         25    2         621     100       629              no (c not divisible by 5)
                                 104     52         52    1       2703     104     2705             yes
                                                         13    4         153     104       185             yes
                                 108     54         54    1       2915     108     2917              no (a not divisible by 3)
                                                         27    2         725     108       733              no (a not divisible by 3)
                                 112     56         56    1       3135     112     3137              no (c not divisible by 5)
                                                           8    7           15     112       113              no (c not divisible by 5)
                                 116     58         58    1       3363     116     3365             yes
                                                         29    2         837     116       845             yes
                                 120     60         60    1       3599     120     3601              no (a not divisible by 3)
                                                         20    3         391     120       409              no (a not divisible by 3)
                                                         15    4         209     120       241              no (a not divisible by 3)
                                                         12    5         119     120       169              no (a not divisible by 3)
                                 124     62         62    1       3843     124     3845             yes
                                                         31    2         957     124       965             yes      
                                                                                
 
     Examining the table closely, it seems that only those b’s which end in 4 or 6 are members of a proper Pythagorean triple. However, 24, 36, 84, and 96 all end in 4 or 6 but are not proper triples because their a-values are not divisible by 3. Thus, their b-values must be divisible by 3, since Theorem 7a of Part 1 tells us that 3 must be a factor of either a or b, but not both.
 
 Now, writing down just those b’s which end in 4 or 6 and are not divisible by 3, we get
 
 
                             b                 4       16       44       56       64       76       104       116       124
                    ------------------------------------------------------------------------------------------------------------               
                      differences             12      28       12        8        12       28         12          8      
 
These differences do form a pattern, but not one that is wholly satisfying! Let’s write down all the values of the b’s which end in 4 or 6, paying no attention to whether or not they are divisible by 3. We get
 
                             b              4     16     24     36     44     56     64     76      84     96     104     116     124               
                 ----------------------------------------------------------------------------------------------------------------------------
                    differences           12      8      12      8      12      8      12       8     12      8        12       8   
 
     Wow! Now we really get a pretty pattern! Apparently, each successive b differs from its predecessor by 12, then by 8, then by 12, then by 8, repeatedly. How very nice!   But that’s not all !   If we write down the first value of b, the third value of b, the fifth value, the seventh, and so on, we get
 
                                                              4     24     44     64     84     104     124
 
and each value differs from its predecessor by 20! This suggests that
 
                                                             b =   4 + 20 k,    for k = 0, 1, 2, 3, . . .
 
Similarly, if we write down the second value of b, the fourth value of b, the sixth, and so on, we get 
 
                                                              16     36     56     76     96     116  
 
and again, each value differs from its predecessor by 20! Thus, it also seems that
 
                                                             b = 16 + 20 k,    for k = 0, 1, 2, 3, . . .
 
     Now to get these nice patterns, we included those b’s which were divisible by 3. However, in a proper Pythagorean triple, only the a’s are divisible by 3. So, we must exclude any of the b’s we found that are divisible by 3. All of this suggests:
 
        Theorem 25 (proposed)
 
        b will be a member of a proper primitive Pythagorean triple if and only if b is not divisible
        by 3, and b   =   4 + 20k    or    b   = 16 + 20k, for  k = 0, 1, 2, 3, . . . 
        Alternatively, we may say that b is NOT a member of a proper primitive Pythagorean triple
        unless ends in a 4 or 6 and is not divisible by 3.    
         ________________________________________________________________________________
 
     Now, to prove Theorem 25, we must find the values of all b’s which are divisible by 4, but not 3 or 5. Let’s start with b  =  4 and attempt to add to it a multiple of k  =  0, 1, 2, 3, . . . ,  to obtain another b. If we use b = 4 + k, for k = 0, 1, 2, 3, . . ., then b will not be divisible by 4, since there will not be a factor of 4 in both terms of b (unless k itself is a multiple of 4). So, let’s try b  =  4 + 4k, for k  =  0, 1, 2, 3,  . . . Then, b will always be divisible by 4, since there is now a factor of 4 in each term of b  =  4 + 4k. 
     But there is trouble, for if k =1, then b = 8, which, as shown in Table 2, is not a member of a proper triple! Furthermore, if k =2, then b = 12, and is thus divisible by 3, which is not possible in a proper triple. However, if we introduce 3 as a factor in the multiple of k, then we get b = 4 + 4(3)k = 4 + 12k,  for   k = 0, 1, 2, 3, . . . Now, is b = 4 + 12k divisible by 3? No, because there is not a factor of 3 in both terms of b. While 3 is a factor of 12k, it certainly is not a factor of 4. Thus, 3 is NOT a divisor of b = 4 + 12k, for k = 0, 1, 2,  . . .
     Of course, b cannot be divisible by 5 either. But, if k = 8, then b = 4 + 12(8) = 4 + 96 = 100, which is divisible by 5! So, let’s introduce 5 as a factor into our multiple of k. Then, b = 4 + 12(5)k  =  4 + 60k, for k a positive integer or 0. Now, 5 is a factor of 60k, but it is certainly not a factor of 4. Thus, 5 is NOT a divisor of
b = 4 + 60k, for k a positive integer or 0. 
     So, the formula, b = 4 + 3(4)(5)k   = 4(1 + 15k) = 4 + 60k meets our requirements that b be divisible by 4, but not by 3 or 5, but does it generate all the values of b found in Table 2 above; namely,      
 
                                4       16       44       56       64       76       104       116       124 ?
 
Let’s see. Using b = 4 + 60k with k = 0, 1, 2, we get only the values 4, 64, and 124:
 
                                    4 = 4 + 60(0),           64 = 4 + 60(1),        124 = 4 + 60(2). 
 
We are missing the values 16, 44, and 56, which lie between 4 and 64, and also the values 76, 104, and 116.    To remedy this, we write b in the following four ways.                     
 
For k = 0, 1, 2, 3, . . .            1)   b   =    4  +  60k,                   2)   b  =  16  +  60k,
                                              3)  b   =   44 + 60k,                    4)    b  =  56  +  60k.      
 
If k = 0, we get        b   =     4,     16,      44,     and     56.         
If k = 1, we get:       b   =   64,     76,    104,     and   116.
If k = 2, we get        b   =   124   (from formula 1).
 
Thus, the four formulas above generate all the values of b found in Table 2.
 
      But, do these values of b obtained by using formulas 1) through 4) generate proper triples? That is, will the triples (a, b, c) generated by these values of b produce values of a and c which are divisible by 3 and 5, respectively? Let’s see.
 
     First, we can write formulas 1) to 4) as   1) b - 60k = 4,     2) b - 60k = 16,     3) b - 60k = 44,    and    4) b   - 60k = 56.   Then, if 3 were a divisor of b, then 3 would be a divisor b - 60k, and thus a divisor of 4, 16, 44, and 56. But this is impossible. So, 3 is not a divisor of b in formulas 1) to 4). Thus, 3 is a divisor of a, since we know that 3 must be a divisor of a or b, but not both.
 
     Second, by writing formulas 1) to 4) as
 
                        1) b  =   4 + 60k  =   4( 1 + 15k),                    2) b  =  16 + 60k  =   4( 4 + 15k)
                        3) b  = 44 + 60k  =   4(11 + 15k),                   4) b  =  56 + 60 k  =  4(14 + 15k),
 
we see that 4 is a factor of each of these formulas. Thus, 4 is a divisor of b.   
 
     Finally,
 
     1) If b = 4 + 60k,   then b/2 = 2 + 30k = mn. Choosing   m = 2 + 30 k, n = 1, we get
         c = m2 + n2   =   (2+30k)2 + 12   =   4 + 120k + 900k2 + 1 = 900k2 + 120k + 5
         = 5(180k2 + 24k + 1). Thus, c has a factor of 5, and 5 is a divisor of c.
 
     2) If b = 16 + 60k, then b/2 = 8 + 30k = mn. Choosing   m = 8 + 30 k, n = 1, we get
          c  =  m2 + n2   =   (8+30k)2 + 12   =   64 + 480k + 900k2 + 1   =   900k2 + 120k + 65
          = 5(180k2 + 24k + 13). Thus, c has a factor of 5, and   5 is a divisor of c.
 
    3) If b = 44 + 60k, then b/2 = 22 + 30k = mn. Choosing m = 22 + 30 k, n = 1, we get
          c = m2 + n2   = (22+30k)2 + 12 = 484 + 1320k + 900k2 + 1 = 900k2 + 120k + 485
          = 5(180k2 + 24k + 97). Thus, c has a factor of 5, and   5 is a divisor of c.
 
      4) If b = 56 + 60k, then b/2 = 28 + 30k = mn. Choosing m = 28 + 30 k, n = 1, we get
           c = m2 + n2 = (28+30k)2 + 12 = 784 + 1680k + 900k2 + 1 = 900k2 + 120k + 785
           = 5(180k2 + 24k + 157). Thus, c has a factor of 5, and 5 is a divisor of c.
 
Thus, in the triple (a,b,c), where b is determined by formulas 1) through 4) above, 3 divides a, 4 divides b, and 5 divides c. So, formulas 1) through 4) do generate proper triples! And since b must be in one of the forms 1) through 4) for it to be divisible by 4 but not 3 or 5, formulas 1) through 4) generate all proper triples.
 
     It is interesting to note that formulas 3) and 4) can be rewritten as follows:
 
               3)    b  =  44  +  60k,  for  k  =  0, 1, 2, . . .
                          =  44  -  60  +  60  + 60k   = -16  + 60(k+1) = -16  +  60k, for  k = 1, 2, 3, . . .
 
                4)   b  =  56  +  60k,  for  k = 0, 1, 2, . . .
                          =  56  -  60  +  60  +  60k =  - 4  +  60(k+1)   =  - 4  +  60k,  for  k = 1, 2, 3, . . . . . .
 
 We have thus proved Theorem 25.
 
                Theorem 25
 
               b belongs to a proper primitive Pythagorean triple if and only if for k = 0, 1, 2, . . .
 
                                    1)    b  =    4 + 60k,                      2)     b  =  16 + 60k,
                                    3)    b  =  44 + 60k,                      4)     b  =  56 + 60k.
                                  ( b = ± 4 + 60 k,        or         b = ± 16 + 60k,       b > 0 )
  
                 Alternatively, b belongs to a proper primitive Pythagorean triple if and only if
 
                             b is divisible by 4, ends in a 4 or 6, and is not divisible by 3.    
              _____________________________________________________________________
 
  
Example 1Determine if b = 232 is a member of a proper primitive Pythagorean triple. If b is a member of a proper triple, it must be capable of being written as one of the formulas 1) through 4) of Theorem 25. However, since 232 = 52 + 60(3), there are NO values for k which allow us to write b = 232 in one of the forms 1) through 4). So, b = 232 is NOT a member of any proper primitive Pythagorean triple. Alternatively, we may note that while b = 232 is divisible by 4 (and is thus a member of a primitive Pythagorean triple) and is not divisible by 3, it does not end in a 4 or 6, and thus by Theorem 25 is NOT a member of any proper triple.
 
Example 2. Determine if b = 616 is a member of a proper primitive Pythagorean triple. If so, then find all proper triples to which it belongs. Since b = 616 is divisible by 4 and thus a member of a primitive Pythagorean triple and is not divisible by 3 and ends in a 6, we know by Theorem 25, that it is a member of a proper triple. To find these proper triples, we construct the following table:
 
                                               b     b/2          m     n                a           b           c            
                                 ------------------------------------------------------------------------------------------                           
                                            616   308        308    1          94,863      616    94,865
                                                                     77    4             5913      616       5945
                                                                     44    7             1887      616       1985
                                                                     28 11               663      616         905
 
Thus, we have four proper (and inverted) triples:
 
             (94,863, 616, 94,865),          (5913, 616, 5945),            (1887, 616, 1985),               (663, 616, 905)
 
     Now, what about a? Can we find conditions on a that will ensure it is a member of a proper primitive Pythagorean triple? Here is a list of all the values in Table 2 in which a belongs to a proper triple.  
 
            3    63    483    117    783    33    1023    1443    357    2703    153    3363    837    3843    957            (1) 
 
Notice that the last digits are always 3 or 7, and that they are all divisible by 3. Putting those values of a whose last digit is a 3 in ascending order, we get
 
                                    3     33     63     153     483     783     1023     1443     3363     3843                               (2)   
 
The first three numbers differ successively by 30. Is it possible that all the values of a have successive differences of 30? If so, then the next numbers after 63 should be 93 and 123 as shown below.
 
                      3     33     63     93?     123?     153     483     783     1023     1443     3363     3843   
 
Is 93 a member of a proper triple? Yes, since 93 = pq = 93(1). Then, m = (93+1)/2 = 47, n = (92-1)/2 = 46, and we have the triple (93, 4324, 4325), which is a proper triple!   Also, 93   =   pq = 31(3), so m = (31+3)/2 = 17, n = (31-3)/2 = 14, and we get another proper triple (93, 476, 485).   123 is also a member of a proper triple, since 123 = pq = 123(1), so m = (123+1)/2 = 62, n = (1234-1)/2 = 61, giving us (123,7564,7565), a proper Pythagorean triple. Also, 123 = pq = 41(3), so m = (41+3)/2 = 22, and n = (41-3)/2 = 19, giving us (123, 836, 845). Great!   With these triples as confirmation of our assumption, let’s state that                                              
 
                                                             a = 3 + 30k,    for k = 0, 1, 2, . . .
 
and see if this formula gives us all the values in list (2) above.
 
      If k = 5, then a = 3 + 30(5) = 153 which is the fourth number in list (2). For 483, we get   3 + 30k = 483, 30k = 480, and k = 16, so the fifth number in the list can be obtained from our formula.   For the rest, we have    783 = 3 + 30(26),    1023 = 3 + 30(34),    1443 = 3 + 30(48),    3363 = 3 + 30(112), and 3843 = 3 + 30(128).
 
     And what about the numbers ending in 7 in list (1)? That is, 117, 357, 837, and 957?  If all these numbers also differ successively by 30, then the numbers before 117 would be 117 - 30  =  87,    87 - 30  =  57, and
57 - 30 = 27. The list for these values ending in 7 would then be        
 
                                           27?     57?     87?     117    . . .    357   . . .   837 . . .   957                              
 
and so on, and we would have the formula                a = 27 + 30k,      for k = 0, 1, 2, . . .
Now, does this formula produce proper triples? Let’s see.
 
     For a = 27, we get the triple (27, 364, 365), a proper triple. In a similar fashion, we can show that 57 and 87 are also members of proper triples. We do get 357, 837, and 957 by using our formula. With k = 11, we have 27 + 30(11) = 357; with k = 27, we have 27 + 30(27) = 837; and with k = 31, we have 957 = 27 + 30(31).   This suggests the following:
                                                             
               Theorem 26
 
                a is a member of a proper primitive Pythagorean triple if and only if
 
                    1)    a = 3 + 30k,      or       a = 27 + 30k,     for k = 0, 1, 2, 3, . . . 
   
                               (or, a = ± 3 + 30k, for k = 0, 1, 2, . . . , a > 0 )      or     
   
                    2)  ends in 3 or 7 and is divisible by 3.
              _________________________________________________________ 
 
    
     To prove Theorem 26, we must find all values of a which are divisible by 3, but not by 4 or 5. Following the proof of Theorem 25, we let a = 3 + some multiple of k, for k = 0, 1, 2, … Let’s start with a = 3 + 3k. Then k is clearly divisible by 3, since 3 is a divisor of both 3 and 3k. But, if k =1, then a = 3 + 3(1) = 6, which is an even integer, but a must be odd. Accordingly, we introduce a factor of 2 into the multiple of k, getting a = 3 + 3(2)k   = 3 + 6k. Then, a is not divisible by 2 because there is not a factor of 2 in both terms of a.
     However, if k = 2, then a = 3 + 6(2) = 15, which is divisible by 5, which is not possible for a proper triple.
Accordingly, we introduce a factor of 5 into the multiple of k, giving us a = 3 + 6(5)k = 3 + 30k. Then, a is not divisible by 5 because there is not a factor of 5 in both terms of a.
    Thus, the formula, a = 3 + 3(2)(5)k = 3 + 30k meets our requirements that a be divisible by 3, but not by 4 or 5, but does it generate all of the values of a shown below; namely,
     
                                                                 3       27       33       57       63 ?
 
Let’s see. Using a = 3 + 30k with k = 0, 1, 2, we get only the values 3, 33, and 63:
 
                                               3 = 3 + 30(0),           33 = 3 + 30(1),        63 = 3 + 30(2). 
 
We are missing the value 27, which lies between 3 and 33, and the value 57, which lies between 33 and 63. To remedy this, we write a in the following two ways.
 
For k = 0, 1, 2, 3, . . .          1)   a = 3 + 30k       or      2)   a = 27 + 30k.
 
For k = 0, we get:    a =    3    and   a   =   27.
For k = 1, we get:    a = 33    and   a   =   57.
For k = 2, we get     a = 63.
 
      But, do the values obtained by using formulas 1) and 2) generate proper triples? Let’s see.
 
A.      a = 3 + 30k, for k = 0, 1, 2,  . . .
 
      Since a = 3 + 30k = 3(1 + 10k),  3 is a divisor of a.
 
         Furthermore, a = pq = (3 + 30k) x 1.   Choosing p = 3 + 30k and q = 1, we have  
 
                                           m   =   (p + q)/2  =  [(3+30k) + 1] / 2   =  2 + 15k,
 and                                     n   =   (p - q)/2   =  [(3+30k) – 1] / 2   =  1 + 15k.
 
Now, b = 2mn = 2(2+15k)(1+15k), and since 2 + 15k and 1 + 15k are consecutive integers, one of them must be even and so divisible by 2. Thus, b is a product of three factors, two of which are even, and thus b is divisible by 4. Thus, 4 is a divisor of b.
 
         Finally, c =   m2 + n2   =   (2 + 15k)2 + (1 + 15k)2    =   4 + 60k + 225k2 + 1 + 30k + 225k2
                        =  450k2 + 90k +  5   =   5(90k2 + 18k + 1), which has a factor of 5. Thus, 5 is a divisor of c
 
B.      a = 27 + 30k, for k = 0, 1, 2,  . . .
 
       Since a = 27 + 30k = 3(9 + 10k), 3 is a divisor of a.
        
          Furthermore, a = pq = (27 + 30k) x 1. Choosing p = 27 + 30k and q = 1, we have                                
 
                                            m   =   (p + q)/2   =   [(27 + 30k) + 1] / 2   =   14 + 15k,
 and                                      n   =   (p - q)/2    =   [(27 + 30k) – 1] / 2   =   13 + 15k.
 
Now, b = 2mn = 2(14+15k)(13+15k), and since 14 + 15k and 13 + 15k are consecutive integers, one of them must be even and so divisible by 2. Thus, b is a product of three factors, two of which are even, and thus b is divisible by 4. Thus, 4 is a divisor of b.
 
          Finally, c =   m2 + n2   =   (14+15k)2 + (13+15k)2   =  196 + 420k + 225k2 + 169 + 390k + 225k2 
                         =  450k2 + 810k + 365 = 5(90k2 + 78k + 73), which has a factor of 5. Thus, 5 is a divisor of c
 
     So, formulas 1) and 2) above do generate proper triples since each formula generates a triple (a, b, c), where 3 divides a, 4 divides b, and 5 divides c. And since a must be in one of the forms 1) or 2) for it to be divisible by 3 but not 4 or 5, formulas 1) and 2) generate all proper triples.
 
     It is interesting to note that formula 2) can be rewritten as follows:
                                               
                                        2)    a  =  27  +  30k,      for k = 0, 1, 2, . . .
                                                   =  27  -  30  +  30  +  30k   = - 3  +  30(k+1), 
                                                   =  - 3  +  30k,      for k = 1, 2, 3, . . .
 
Thus, we have that a = ± 3 + 30k,       for k = 0, 1, 2, . . . ,      a > 0, and we have proved Theorem 26.
 
Example 3. Determine if a = 117 is a member of a proper primitive Pythagorean triple. If it is, find all the proper triples to which it belongs. Since a = 117 ends in a 7 and is divisible by 3, Theorem 26 tells us that it is a member of a proper triple. To find those proper triples to which a belongs, we write a = 117 = pq = 117(1) = 39(3) =  13(9). This gives us 
                                                       p        q         m       n             a          b           c
                                                --------------------------------------------------------------------------
                                                     117      1         59     58          117     6844     6845
                                                       13      9         11       2          117         44       125
 
Thus, a =117 belongs to two proper primitive Pythagorean triples, (117, 6844, 6845) and (117, 44, 125). Note that the first is regular, and the second inverted.
 
     Finally, what conditions must we impose upon c in order for it to be a member of a proper triple? Writing in ascending order all those values of c which belong to a proper triple as found in Table 2 above, we
get
                       5    65   125 185   365   485   785    845   965   1025   1445   2705   3365   3845  
 
     Note that the last digit in each of these numbers is 5, and that the first 4 numbers differ successively by 60. Following the same procedure as used for a and b, we predict that c = 5 + 60k, for k = 0, 1, 2, . . .   and verify that each number in our list satisfies this formula.   Thus,
 
                  5 = 5 + 60(0),              65 = 5 + 60(1),             125 = 5 + 60(2),             185  = 5 + 60(3),  
              365 = 5 + 60(6),            485 = 5 + 60(8),             785 = 5 + 60(13),            845 = 5 + 60(14),
              965 = 5 + 60(16),        1025 = 5 + 60(17),         1445 = 5 + 60(24),          2705 = 5 + 60(45),
                                                  3365 = 5 + 60(56),         3845 = 5 + 60(64).
 
     However, for k = 4, we get c = 5 + 60(4) = 245, which is NOT in our list and is NOT a member of a proper triple because it is not a member of any primitive Pythagorean triple, proper or not! This is because 245
= 5(7)(7), and its factors of 7 are not of the form 4L+1 for some integer L.   This suggests the following theorem.
 
                   Theorem 27
 
                  c will be a member of a proper primitive Pythagorean triple if and only if it is a member
                  of a primitive Pythagorean triple and is of the form c = 5 + 60k, for k = 0, 1, 2, 3, . . .
                    ______________________________________________________________________
 
     To prove Theorem 27, we must find all values of c which are divisible by 5, but not 3 or 4. Following the pattern of the previous two proofs, we start with  c = 5 + 5k,   for k = 0, 1, 2,  . . . Clearly, c = 5 + 5k  = 5(1+k), so  5 is a divisor of c,  but for k = 2, we get c = 15, which is divisible by 3, and for k = 3, we get c = 20, which is divisible by 4, which is not possible for a proper triple! Accordingly, we will incorporate both 3 and 4 as factors in our multiple of k, getting    c = 5 +  5(3)(4)k   = 5 + 60k.    Then, c is not divisible by 3 or 4, because there is not a factor of 3 nor a factor of 4 in both terms of c.
 
     Next, we must show that if c = 5 + 60k, then it will be a member of a proper triple in which b is divisible by 4, but not 3, and a is divisible by 3, but not 4.
 
     We know that   b + c = (m + n)2, and since m and n have opposite parity, m + n must be an odd integer. Thus,
m + n = 2L + 1 for some integer L, so  
 
                                                   b + c   =   (2L+1)2
and                                                b      =    (2L+1)2      –         c  
                                                              =   4L2 + 4L + 1   –   (5 + 60k) 
                                                              =    4L2 + 4L – 4 –   60k     =    4(L2 + L – 1 – 15k),                                    
 
which shows that b has a factor of 4, and thus 4 is a divisor of b.
 
     Now, is b divisible by 3? Let’s hope not!   We have   b = 4(L2 + L – 1 – 15k)
 
                                                                                            = 4H,
 
where H = L2 + L – 1 – 15k. Then, if b is divisible by 3, 3 must be a factor of H, since it surely is not a factor of 4.   Now, either   a)  L has a factor of 3,    or   b)  L doesn’t have a factor of 3
 
     a) If L has a factor of 3, it can be written as L = 3j, for some integer j. Then,
 
                    H   =   L2 + L – 1 – 15k    =   9j2  + 3j – 1 – 15k    =   3(3j2 + j – 5k) – 1,
 
         which shows that H does not have a factor of 3.
 
     b) If L does not have a factor of 3, it can be written as either 1) L = 3j+1 or 2) L = 3j+2.
 
           1) If L = 3j+1, then H = L2 + L – 1 – 15k = (3j+1)2 + (3j+1) – 1 – 15k
                                               = 9j2 + 6j + 1 + 3j + 1 – 1 – 15k   =   9j2 + 9j – 15k – 1
                                               = 3(3j2 + 3j – 5k) – 1,     which shows that H does not have a factor of 3.
 
           2)  If L = 3j+2, then H = L2 + L – 1 – 15k = (3j+2)2 + (3j+2) – 1 – 15k
                                               = 9j2 + 12j + 4 + 3j + 2 – 1 – 15k   =   9j2 + 15j – 15k + 3 + 2
                                               = 3(3j2 + 5j – 5k + 1) + 2,    which shows that H does not have a factor of 3.
 
     Now in both cases a) and b), we have shown that H does not have a factor of 3, so b = 4H does not have a factor of 3, and thus for c = 5 + 60k, b is divisible by 4 but not 3.
 
     Finally, since a is always odd, it cannot be divisible by 4. We also know that in any primitive Pythagorean triple, either a or b, but not both, is divisible by 3. Since we have just proved that b is not divisible by 3, then a must be divisible by 3. Thus, a is divisible by 3 but not 4,
 
     Thus, we have shown that if c = 5 + 60k, it will be a member of a proper triple in which b is divisible by 4, but not 3, and a is divisible by 3, but not 4, and c is divisible by 5. This proves Theorem 27. Below are Theorems 25 through 27 combined into one theorem.
 
         Theorem 28
 
         a is a member of a proper primitive Pythagorean triple if and only if
 
              1)   a = 3 + 30k,   or    a = 27 + 30k, for k = 0, 1, 2, . . .   or
              2)   a = ± 3 + 30k, for k = 0, 1, 2, . . . , b > 0.      or
              3)   a  ends in 3 or 7 and is divisible by 3.
 
         b belongs to a proper primitive Pythagorean triple if and only if
 
              1)   b = 4 + 60k    or   b = 16 + 60k     or   b = 44 + 60k    or   b = 56 + 60k, for k  = 0, 1, 2, . . .    or
              2)   b = ± 4 + 60 k   or   b =   ± 16 + 60k,   for k = 0, 1, 2, . . ., b > 0,   or
              3)   b ends in  4 or 6 and is divisible by 4, but not 3.
 
         c belongs to a proper primitive Pythagorean triple if and only if c is a member of
          a primitive Pythagorean triple and is of the form c = 5 + 60k, for k = 0, 1, 2, . . . 
   ___________________________________________________________________________
 
      To see what we’ve got, let’s now construct tables of proper primitive Pythagorean triples for each of the formulas for a, b, and c from Theorem 28 above, showing the values of k, m, n, a, b, and c (and other appropriate values as needed).
        
                                                                                       Table a
                                                                     Proper Pythagorean Triples
                                                   a = 3 + 30k   and   a = 27 + 30k, for k = 0, 1, 2,  . . .  ,7
 
                                         k            a            p      q            m       n              a           b             c       
                                        -----------------------------------------------------------------------------------------------
                                         0           3             3     1             2       1              3            4             5 
                                                    27           27     1          14     13            27        364        365
                                            
                                         1        33            33     1          17     16            33        544        545   
                                                                    11     3            7       4            33          56           65      
        
                                                    57            57     1         29     28            57      1624      1625        
                                                                    19     3          11       8            57        176        185   
                      
                                          2        63            63     1          32    31            63      1984      1985
                                                                       9     7            8      1             63          16          65
                  
                                                     87           87     1          44    43             87       378      3785                    
                                                                     29     3          16    13            87        416        425
                                          3         93           93     1          47    46            93      4324      4325
                                                                     31     3          17    14            93        476        485
                                                   117         117     1          59    58          117      6844     6845
                                                                     13     9          11      2          117           44       125
                                          4       123         123     1          62    61          123      7564     7565        
                                                                     41     3          22    19          123        836        845
                                                    147        147     1          74    73          147    10804   10805
                                                                     49     3          26    23          147      1196     1205
                                         5        153        153     1          77    76           153    11704   11705
                                                                    17     9          13      4            153        104       185
                 
                                                   177        177     1          89    88            177   15664   15665
                                                                    59     3          31    28            177     1736      1745 
                                          6       183        183     1          92    91            183   16744   16745                            
                                                                    61     3          32    29            183     1856      1865
                                                    207       207     1        104  103           207   21424    21425
                                                                    23     9           16      7           207       224         305                 
                                          7        213       213     1        107  106           213   22684    22685
                                                                    71     3           37    34           213     2516      2525
                                                     237      237     1        119  118            237   28084    28085
                                                                    79     3           41   38            237     3116      3125
                                           ------------------------------------------------------------------------------------------------
 
 
                                                                                         Table b
                                                                          Proper Pythagorean Triples
                                   b = 4 + 60k   or   b = 16 + 60k or b = 44 + 60k or b = 56 + 60k for k = 0, 1, 2, 3, 4.
 
                                                      k           b        b/2         m    n             a         b          c       
                                                  --------------------------------------------------------------------------------
                                                      0           4          2          2     1             3         4           5
                                                                 16          8          8     1           63       16         65
                                                                 44        22        22     1         483       44       485              
                                                                                          11     2         117       44       125
                                                                 56        28        28     1         783       56       785
                                                                                            7     4           33        56         65 
 
                                                      1          64      32         32     1        1023     64      1025
                                                                  76      38         38     1        1443     76      1445
                                                                                          19     2          357     76         365
                                                                104      52         52     1        2703   104      2705
                                                                                          13     4          153    104        185
                                                                116      58         58     1        3363   116      3365
                                                                                          29     2           837   116        845
 
                                                      2        124       62         62     1        3843   124      3845  
                                                                                           31     2           957   124        965
                                                                136       68         68     1        4623   136      4625
                                                                                           17     4          273    136        305
                                                                164       82         82     1        6723   164      6725
                                                                                           41     2        1677   164      1685
                                                                176       88         88     1        7743   176      7745
                                                                                           11     8             57   176        185
 
                                                      3        184       92         92     1        8463   184      8465                                                                                                                        23    4           513   184        545
                                                                196       98         98     1         9603   196      9605
                                                                                           49     2         2397   196      2405
 
                                                                224     112      112     1       12543   224    12545
                                                                                           16     7           207   224         305
                                                                236     118      118     1       13923   236    13925
                                                                                           59    2          3477   236      3485   
                                                     
                                                      4        244      122      122     1      14883   244   14885     
                                                                                            61     2        3717   244      3725 
                                                               
                                                                256      128      128     1      16383   256   16385
                                                                                   
                                                                284      142      142     1      20163   284   20165
                                                                                            71     2        5037   284     5065
 
                                                                296      148      148     1      21903   296   21905
                                                                                            37    4         1353   296     1385
 
                                                --------------------------------------------------------------------------------------
 
 
                                                                                          Table c
                                                                         Proper Pythagorean triples
                                                                c = 5 + 60k,   for k  =  0, 1, 2, 3, . . . , 16.
                       
                                                            k          c           m     n             a         b          c       
                                                    --------------------------------------------------------------------------------------------
                                                           0            5          2     1              3         4          5
 
                                                           1          65          8     1            63       16        65
                                                                                      7     4            33       56        65
                                                
                                                           2        125        11     2          117       44      125                        
 
                                                           3        185        13     4          153     104      185  
                                                                                    11     8            87     176      185
 
                                                           4        245 = 5(7)(7)  (not a member of a primitive Pythagorean
                                                                           triple since 7 is not of the form 4L+1)
 
                                                           5        305        17     4          273     136      305
                                                                                    16     7          207     224      305
                                                           6        365        19     2          357       76      365
                                                                                    14   13            27     364      365
 
                                                           7        425        19     8          297     304      425           
                                                                                    16   13            87     416      425
 
                                                           8        485        22     1          483       44      485
                                                                                    17   14            93     476      485
 
                                                           9        545        23     4          513     184      545        
                                                                                    17   16            33     544      545
 
                                                         10         605 = 5(11)(11) (not a member of a primitive Pythagorean
                                                                                       triple since 11 is not of the form 4L+1)   
 
                                                         11         665 = 5x7x19 (not a member of a primitive Pythagorean
                                                                                     triple since 7 and 19 are not of the form 4L+1)
 
                                                         12         725       26     7          627     364      725
                                                                                    23   14          333     644      725
 
                                                         13         785       28     1          783       56      785         
                                                                                    23   16          273     736      785                                   
 
                                                         14         845       29     2           837     116     845
                                                                                    22   19           123     836     845
 
                                                         15         905       29     8           777     464     905
                                                                                    28   11           663     616     905
 
                                                         16         965       31     2           957     124     965
                                                                                    26   17           387     884     965
                                      ----------------------------------------------------------------------------------------------------------
  
                                                                   Part B                                     Part C   
                                                                                             Home