Cubes as Sums of Consecutive Odd Integers
 
 
David W. Hansen
                                                                                   © 2003
      
     Nichomachus, a mathematician from the early Christian era, is credited with being the first to state that cubical numbers are always equal to the sum of consecutive odd integers [1]. For example,
  
                                            13     =    1    =                            1
                                            23     =    8    =                         3 + 5
                                            33     =   27   =                      7 + 9 + 11
                                            43     =   64   =               13 + 15 + 17 + 19
                                            53     =  125   =          21 + 23 + 25 + 27 + 29
  
     Note that in each case above, the number of consecutive odd integers needed to represent the cube is equal to the base of the cube. For example, 23 is represented by 2 consecutive odd integers; 53 is repre-sented by 5 consecutive odd integers. In general, we will find that any cube n3 may be written as a sum of n consecutive odd integers.
 
     Now, how can we write any cube as a sum of consecutive odd integers? It’s easy! From the article on Representing Natural Numbers by Sums of Consecutive Odd Integers [2], we find that a natural number N can be represented as a sum of consecutive odd integers if and only if it can be written as a product of two factors, each greater than 1 and of the same parity.  Using the ordering method from this article, we get
 
               23  =  2(22)  =  2(4)    =     4 + 4      =    (4-1)    +       (4+1)  =  3 + 5,  using the  +  sign as pivot.
 
               33  =  3(32)  =  3(9)    =  9 + 9 + 9   =   (9-2) + 9  + (9+2)    = 7 + 9 + 11, using the middle 9 as pivot.
 
               63  =  6(62)  =  6(36)  =    36    +    36   +     36   +    36    +     36    +    36
                                                    =  (36-5) + (36-3) + (36-1) + (36+1) + (36+3) + (36+5)
                                                    =      31   +    33   +    35    +    37    +     39    +     41.
     
     In general, for any n3, where n is a natural number, we have  n3  =   n(n2)  = n2 + . . . + n2,         which is a sum of n addends of n2, which gives us n consecutive odd integers after the ordering method is used.   
 
     If n is even, then so is n2, and if n is odd, then n2 is also, so the two factors of n3 = n(n2) are of the same parity, and we can write n3 as a sum of consecutive odd integers, where, using Theorem 1 of [2]  for
n3  = n(n2) = ka,  we have the first term   F   =   a  -  (k-1)  =  n2  -  (n-1),   and  the  last  term     L  =  a + (k-1)
=   n2 + (n-1)  =  n2 – (n-1) + 2(n-1)  =  F + 2(n-1). This gives us   
 
                                                       n3   =   [n2 - (n-1)]   +   . . .   +   [n2 + (n-1)].                                                         (1)
 
     Now, n3 can also be written as n2(n). Will this factorization give us a sum of consecutive odd integers different from the one we got using n(n2)? Let’s see.
 
     Using Theorem 1 of [2] for n3  = n2(n) = ka, we have the first term F = a - (k-1) = n - (n- 1), and the last term L = a + (k-1) =   n + (n2 - 1). Now, n - (n2 - 1) is negative for n > 1 (see proof below), so we get
 
              n3   =     [n - (n2 - 1)]   +   . . .   +    [n + (n2 - 1)]
                    =   - [(n2 - 1) - n]    +   . . .   +   [n + (n2 - 1)]
                    =   - [(n2 - 1) - n]  +   . . .   +   [(n2 - 1) - n]   +    [(n2 - 1) - n + 2]   +   . . .   +   [n + (n2 - 1)]
                    =                                                                    +    [(n2 - 1) - n + 2]   +   . . .   +   [n + (n2 - 1)]
                    =     [(n2 - 1) - n + 2]   +   . . .   +    [n + (n2 - 1)] 
                    =           [n2 - n + 1]     +   . . .   +    [n2 + n - 1)]
                    =           [n2 - (n - 1)]   +    . . .   +   [n2 + (n - 1)]                                                                                       (2)
 
     Since (2) is identical to (1), we see that n2(n) does not give us a different sum of consecutive odd integers for n3 for n > 1.   Of course, if n  =  1, we get   F   =  n - (n- 1)   =   1 - (12 - 1)   =  1, and    =   n + (n- 1)   = 1 + (12 - 1) = 1, which, since F = L gives us 13 = 1, which, strictly speaking, is not a sum of consecutive odd integers, but we shall make an exception here once!
 
                                        Proof that if n is a natural number > 1, then n - (n2 - 1) < 0.
 
      If n is a natural number > 1, then n   ≥   2   >   (1 + √5) / 2      1.618.
  
      So,                                                n    >    (1 + √5) / 2
                                                            n    >   1/2 + √5/2  
                                                  n – 1/2    >    √5/2  
                                             (n – 1/2 )2    >    (√5/2)2  
                                            n2 – n + 1/4   >    5/4
                                               n2 – n – 1   >    0
                                                   n2 – 1     >    n,
        or                                               n     <    n2 – 1, 
        and                              n - (n2 - 1)   <   0  for   n  >  1
 
     All of this gives us
 
          Theorem 1
               
           If n is a natural number, then n3 can be written as a sum of n consecutive odd integers
           whose first term is  F =  n2 – (n-1), and whose last term L =  n2 + (n-1) = F + 2(n-1).
          __________________________________________________________________
 
  Example  Write 73 as a sum of 7 consecutive odd integers. Since n = 7, the first term is  F  =  72 – (7-1)      = 49 – 6 = 43, and the last term is L = 72 + (7-1) = 49 + 6 = 55, or L = 43 + 2(7-1) = 43 + 12 = 55. Thus,  
 
                                                    73  =  43 + 45 + 47 + 49 + 51 + 53 + 55.
 
     Now, take a look at the beginning of this section where various cubes were written as sums of consecutive odd integers. If we form the sum of the first 4 cubes and their consecutive odd integer representations, we have
 
                                  13 + 23 + 33 + 43   =   (1) + (3+5) + (7+9+11) + (13+15+17+19), 
or                              13 + 23 + 33 + 43    = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19.
 
    Here we were able to write the sum of the first 4 cubes as the sum of the first 10 consecutive odd integers! How very nice! Could it be possible that we could write the sum of the first n cubes as a sum of consecutive odd integers starting at 1? Let’s see. Perhaps some of the work we did in earlier sections can help us here.
 
     First, recall that                             1 + 2 + . . . + n   =   n(n+1)/2,                                                                          (3)
 
and                                                      1 + 3 + 5 + . . . + (2n-1) = n2.                                                                         (4)
   
     Second, in the article  Cubes to a Square [3],  we proved that
 
                                                      13 + 23 + . . . + n3   =   (1+2+ . . . + n)2.                                                                (5)
 
     If we let S  =  1 + 2 + . . . + n in (5), we have
 
                                               13 + 23 + . . . + n3   =   (1 + 2 + . . . + n)2.   =   S2.                                                      (6)
 
Since n can be any natural number, we may replace n by S in (4) above to get
 
                                                 S2   =   1 + 3 + . . . + (2S-1),                      and (6) then becomes
 
                         13 + 23 + . . . + n3   =   (1 + 2 + . . . + n)2.   =   1 + 3 + 5 + . . . + (2S-1),                                         (7)
 
From (3) above, we know that S  =  1 + 2 + . . .   + n  =  n(n+1)/2.  So, replacing S by n(n+1)/2 in (7), we have
   
                              13 + 23 + . . . + n3    =    (1 + 2 + . . . + n)2    =    1 + 3 + 5 +  . . . +    (2S-1),             
 
                                                                =   1 + 3 + 5 + . . . +  [2n(n+1)/2 – 1]
 
                                                                =    1 + 3 + 5 + . . . +   (n2 + n – 1)                                                              (8)
 
     Now, each of the cubes on the left-hand side of this equation is represented by the sum of the number of consecutive odd integers equal to its base.  It follows then that the total number of consecutive odd integers
k used to represent this sum of cubes must equal the sum of the bases of the cubes; namely,
          
                                                       k  =  S  =  1 + 2 + . . . + n,                             giving us the following theorem.
 
            Theorem 2
  
             Let W be the sum of the consecutive cubes from 1 to n, and let S be the sum of the
             bases of these cubes. Then, W can be written as the sum of all the consecutive odd
             integers from either 1 to 2S – 1 or 1 to n2 + n – 1. The total number k of these conse-
             cutive odd integers is S, and W = S2. Thus, we have
         
                                W   =  13 + 23 + . . . + n3   =   1 + 3 + 5 + . . . +    (2S-1)
 
                                                                          =   1 + 3 + 5 + . . . + (n2 + n –1),
 
                                       =   S2   =   (1 + 2 + 3 + . . . + n)2.                                                                                     
          __________________________________________________________________   
     
 Example   a) Determine how many consecutive odd integers starting at 1 are needed to write
13 + 23 + 33 + 43 + 53 + 63 as a sum.  b) Find the last integer in this sum. c) Find all the integers.
 
   a) The number k of consecutive odd integers needed is equal to the sum S of the bases of the cubes;
        that is, S  =  1 + 2 + 3 + 4 + 5 + 6  =  21.
 
   b) The last integer is either  2S  - 1  =  2(21)  - 1  =   41, or, since n = 6,
                n2 + n - 1  =  62 + 6  - 1  =  41.
 
   c) The consecutive odd integers are:
 
        1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 + 37 + 39 + 41. 
 
 Example   71 is the last term in a set of consecutive odd integers starting at 1 which represents a sum of  
 consecutive cubes starting at 1. Find
     a) the value of the sum of cubes,
     b) its largest cube,
     c) the number of consecutive odd integers used in the representation of the sum of cubes. Then,
     d) write out the sum of cubes, and
     e) write out the sum of the consecutive odd integers.  
 
   a)     From the first part of Theorem 2, the last term is 2S – 1. Thus, 2S – 1 = 71, 2S = 72, and S = 36,
         the sum of the bases. The value of the sum of cubes is S2 = 362 = 1296.
 
   b)     Its largest cube is n3. To find n, we use the second part of Theorem 2, which tells us the last
         term is n2 + n – 1. Thus, n2 + n –1  =  71,   n2 + n – 72  =  0,   (n-8)(n+9)  =  0, and  n = 8.
         The largest cube is then 83 = 512.
 
   c)     There are S = 36 integers in the representation of the sum of cubes by a sum of consecutive odd  
         integers.
 
     d)   Since n = 8, the sum of cubes is   13 + 23 + 33 + 43 + 53 + 63 + 73 + 83.
 
     e)   Since the first term is 1 and the last term is 71, we have
                             
                                                1 + 3 + 5 + 7 + 9 + . . . + 65 + 67 + 69 + 71.
     In summary,
 
                  13 + 23 + 33 + 43 + 53 + 63 + 73 + 83    =    1 + 3 + 5 + 7 + 9 + . . . + 65 + 67 + 69 + 71
 
                                                                                    =               (1 + 2 + 3 + . . . + 8)
 
                                                                                    =                               362
 
                                                                                    =                             1296
 
 
                                                                                  References
 
    [1]  Reid, Constance, From Zero To Infinity, 3rd ed., New York: Thomas Y. Crowell Company, 1966
                       (Apollo Edition), pp. 110-111
 
    [2]  Hansen, David W., Representing Natural Numbers by Sums of Consecutive Odd Integers.
                       (mathematics1.fortunecity.com/ConsecutiveOddIntegers.html)
 
    [3]  Hansen, David W., Cubes to a Square.
                       (mathematics1.fortunecity.com/CubesToSquare.html)
    ________________________________________________________________________________ 
 
                                                                                            Home