Cubes to a Square
 
                                                                               David W. Hansen
                                                                                       © 2003
 

         Take a glance at the following sums of cubes.

 

                                                  13                   =        1      =     12       =           (1)2   

 

                                             13 + 23                =        9      =     32       =        (1 + 2)2

 

                                          13 + 23 + 33           =      36      =     62      =      (1 + 2 + 3)2

 

                                     13 + 23 + 33 + 43        =    100      =   102      =   (1 + 2 + 3 + 4)2

 

         It appears from these four equations that to find the sum of the cubes of the first n consecutive natural

 

     numbers, all that is necessary is to add up these natural numbers and square the result. For example, to

 

     find 13 + 23 + 33 + 43 + 53 + 63, simply find the sum 1 + 2 + 3 + 4 + 5 + 6, which is 21, square this to get

 

     212 = 441, and you have the sum of the cubes of the first six natural numbers without having to calculate

 

     any cubes at all!      

          

         In general,                                 13  +  23  +  .  .  .  +   n3   =   (1 + 2 +  . . . + n)2                                        (1)

 

    To prove (1), we use the two formulas:

 

                         13 + 23 + .  .  .  + n3  =  n2 (n+1)2/4        and      1 + 2 + .  .  .  + n  =  n(n+1) / 2.

 

    Then,   13 + 23 + . . .  + n3  =  n2 (n+1)2 / 4  =  [ n(n+1) / 2 ]2  =  (1 + 2 + . . .  + n)2, and (1) is proved.

 
     Example 1.   Find the sum of the cubes of the first eight natural numbers. Using (1), we simply     

     add up the first eight natural numbers; 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36, and then square the result:

     362  = 1296.   Thus,   13  +  23  +  33  +  43  +  53  +  63  +  73 +  83   =   1296! 

 __________________________________________________________________________________ 

                                                                                 Home