Up and Down Series

 

David W. Hansen
© 2003
 
          The following set of beautiful equations are called Up and Down Series because of the up and down
      nature of the terms in each series on the left.
 
                                                             1                                         =         1       =        12
 
                                                      1 + 2 + 1                                  =         4       =        22
 
                                               1 + 2 + 3 + 2 + 1                           =         9        =       32
 
                                       1 + 2 + 3 + 4 + 3 + 2 + 1                     =       16       =       42
 
                               1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1             =       25       =       52
 
          Here’s a dot picture of the 4th up and down series (which looks like a tree!)
                                                                      .
                                         .   .   .
                                     .   .   .   .   .
                                 .   .   .   .   .   .   .
                                 1  +  2  +  3  +  4  +  3  + 2  +  1
 
          The five equations above suggest to us that, in general,
 
                       1  +  2  +  3  +  .  .  .  +   n  +  .  .  .  +  3  +  2  +  1   =   n2,  for any natural number n.
                                      
          Let’s try to prove this. 

          Since 1 + 2 + 3 +  .  .  .  + n  =  n(n+1)/2,  then we get 

                                                              1 + 2 + 3 + .  .  .  +  n  + .  .  . + 3 + 2 + 1

     =                                             1 + 2 + 3 + .  .  .  + n  +  n  + .  .  . + 3 + 2 + 1  –  n

     =                                   (1 + 2 + 3 + .  .  .  + n)  +  (n  + .  .  . + 3 + 2 + 1)  –  n

     =                                                              n(n+1)/2   +   n(n+1)/2  –  n

     =                                                                      2[n(n+1)/2]  –  n

     =                                                                           n(n+1)  –  n

     =                                                                            n2 + n – n

     =                                                                                    n2 

                                                                      which proves our conjecture.

 
     Example 1Find an up and down series whose sum is 64. The sum of an up and down series is n2,
     so n2  =  64, and n (the middle or largest term)  =  8. The series is then
 
                                    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1  =  82  =  64.
 
 
     Example 2Find the number of terms in an up and down series whose sum is 256.   Since n2  =  256
     = 162,  the middle number of the series is n  =  16. There will then be15 terms to the left and 15 terms
     to the right of this middle number, giving us a total of 31 terms (including, of course, the middle number).