To find the subtraction formulas for the sine, cosine, and tangent functions, we start with angles A and B subtracted as shown below in Figure 19,
Figure 19
with Ð DOC = A, Ð GOC = B, and Ð DOE = A - B, where we have dropped a line segment DC from the terminal side of angle A perpendicular to the initial side of angle B at C intersecting the terminal side of angle B at G and a line segment DF from the terminal side of angle A perpendicular to the initial side of angle A - B at E intersecting the initial side of angle B at F.
Note: Since DC is perpendicular to OF and DF is perpendicular to OE, then Ð GOC = Ð GDE = angle B.
Also, since DC = DG + GC, then DG = DC - GC (24)
In Triangle OCD, sin A = DC / OD or DC = OD sin A (25a)
cos A = OC / OD or OC = OD cos A (25b)
and tan A = DC / OC. (25c)
In Triangle OCG, sin B = GC / OG or GC = OG sin B (26a)
cos B = OC / OG or OC = OG cos B , (26b)
and tan B = GC / OC. (26c)
Thus, from (25b) and (26b), we have OG cos B = OD cos A (27)
In Triangle DEG, cos B = DE / DG or DE = DG cos B (28)
DE DG cos B
Now, in Triangle OED, sin (A - B) = ------------ = ----------------------- from (28),
OD OD
(DC - GC) cos B
= ------------------------ from (24),
OD
(OD sin A - OG sin B) cos B
= ------------------------------------------ from (25a) and (26a),
OD
OD sin A cos B - (OG cos B)sin B
= -------------------------------------------------------- regrouping,
OD
OD sin A cos B - OD cos A sin B
= -------------------------------------------------- from (27),
OD
Thus, sin (A - B) = sin A cos B - cos A sin B.
In Triangle OEF, cos B = OE / OF or OE = OF cos B (29)
In Triangle DCF, sin B = CF / DF or CF = DF sin B (30a)
cos B = DC / DF or DC = DF cos B , (30b)
and tan B = CF / DC. (30c)
OE OF cos B
Now, in Triangle OED, cos (A - B) = ------------ = ----------------------- from (29),
OD OD
(OC + CF) cos B
= --------------------------
OD
(OD cos A + DF sin B) cos B
= ----------------------------------------- from (25b) and (30a),
OD
OD cos A cos B + (DF cos B) sin B
= -------------------------------------------------------- regrouping,
OD
OD cos A cos B + DC sin B
= ------------------------------------------------ from (30b),
OD
OD cos A cos B + (OD sin A) sin B
= ------------------------------------------------ from (25a),
OD
Thus, cos (A - B) = cos A cos B + sin A sin B.
DE DG cos B
And, in Triangle OED, tan (A - B) = ------------ = ----------------------- from (28),
OE OE
(DC - GC) cos B
= ----------------------- from (24) and (29),
OF cos B
DC - GC
= --------------
OF
DC - GC
= ---------------
OC + CF
DC GC
------ - ------
OC OC
= ---------------------------- (dividing by OC) OC CF
------ + -------
OC OC
tan A - tan B
= ----------------------------- from (25c) and (26c),
DC CF
1 + ------ • -------
OC DC
tan A - tan B
Thus, tan (A - B) = ------------------------------ from (25c) and (26c) 1 + tan A tan B
OE OE
Finally, in Triangle OED, cot (A - B) = ------------ = ----------------------- from (28),
DE DG cos B
OF cos B
= ----------------------- from (24) and (29),
(DC - GC) cos B
OF
= --------------
DC - GC
OC + CF
= ---------------
DC - GC
OC
------- + 1
CF
= --------------------- (dividing by CF)
DC GC
------ - ------
CF CF
OC DC
------ • ------ + 1
DC CF
= --------------------------------
GC
cot B - --------- from Triangle DCF in Figure 19,
CF
GC GC OC DC GC DC OC
Now, -------- = ------- • -------- • -------- = -------- • -------- • -------- = tan B cot B cot A = cot A (31)
CF CF DC OC OC CF DC
cot A cot B + 1
Thus, cot (A - B) = ----------------------------- substituting from (31).
cot B - cot A