Euclid’s Proof of the Pythagorean Theorem
 
                                                                              David W. Hansen
                                                                                     2009
 
     The Pythagorean Theorem states that the sum of the areas of the squares on the two legs of a right triangle equals the area of the square on its hypotenuse. In Figure 1 below, Triangle ABC is a right triangle, AFGB, BHIC, and ADEC are squares, and BJ is perpendicular to DE.  
 
                   
      To prove the Pythagorean Theorem, we must show that the sum of the areas of AFGB (Square 1) and BHIC (Square 2) equals the area of ADEC.
     
      Euclid showed that the area of Square 1 equals the area of Rectangle 1, and the area of Square 2 equals the area of Rectangle 2, thus showing that the
  
                   Area of Square 1 + Area of Square 2   =  Area of Rectangle 1 + Area of Rectangle 2
                                                                                      =  Area of Square ADEC.
 
      Here’s how he did it. (Recall that the area of the triangle shown below is ½ bh.)  
                                      
                           
 In Figure 2 below, we have
 
          1.   The area of rectangle AKJD  =  AD · DJ, and the area of  Triangle ABD  =  ½ AD · DJ, so
                                        2 · area of Triangle ABD  =  AD · DJ  =  area of AKJD.                                      (1)
                   
          2.     Triangle AFC is congruent to Triangle ABD  by SAS because    AF = AB, AC = AD,   
                  and angle FAC  =  angle BAC + 90°  =  angle DAB.   Thus, the
                                                  area of Triangle AFC   =   area of Triangle ABD.                                        (2)
                           
          3.      The area of Triangle AFC  =  ½ AF · FG,   so   2 · area of Triangle AFC  =  AF · FG.          (3)         
 
 
          Thus,     the area of AFGB  =  AF · FG  =  2 · area of Triangle AFC                          from (3),
                                                                             =  2 · area of Triangle ABD                          from (2),
                                                                             =    area of AKJD,                                          from (1).    
 
                So,               the area of Square 1   =   the area of Rectangle 1.                                             (A)        
 
 
     In Figure 3 below, we have           
 
          4.    The area of rectangle KCEJ  =  CE · JE,  and the area of Triangle CEB  =  ½ CE · JE, so
                                      2 · area of Triangle CEB  =  CE · JE  =  area of KCEJ.                                          (4)
 
          5.     Triangle CAI is congruent to Triangle CEB by SAS because    AC = CE, CI = BC,  
                  and angle ACI  =  angle ACB + 90° = angle ECB.   Thus, the
                                                     area of Triangle CAI   =   area of Triangle CEB.                                       (5)
                                        
          6.      The area of Triangle CAI  =  ½ CI · HI,   so   2 · area of Triangle CAI   =  CI · HI.                   (6)         
 
          Thus,    the area of BHIC  =  CI · HI  =  2 · area of Triangle CAI                           from (6),
                                                                       =  2 · area of Triangle CEB                         from (5),
                                                                       =    area of KCEJ,                                         from (4).    
 
                So,                the area of Square 2   =   the area of Rectangle 2.                                            (B)        
 
     From (A) and (B), we get                Area of Square 1     +     Area of Square 2  
                                                      =     Area of Rectangle 1   +   Area of Rectangle 2
                                                      =                            Area of ADEC,
 
     or:                                                     The Pythagorean Theorem
 
                        The sum of the areas of the squares on the two legs of a right triangle
                                        equals the area of the square on its hypotenuse.
                          ________________________________________________________
                                                                                                                                      
     Now, let’s find the dimensions of rectangles 1 and 2,    In figure 4 below, we have a right triangle whose legs have lengths of a and b and whose hypotenuse is of length c. Both rectangles 1 and 2 have a length of c, and we have denoted the width of rectangle 1 as x and the width of rectangle 2 as y.   Now, we have proved above that  
                                           (A)        area of Square 1   =    area of Rectangle 1
or                                                                  a2               =            cx,
and, solving for x, we have                                       x   =   a2/c.
 
Thus,                                Rectangle 1 has a width of a2/c and a length of c.
                 
               
Also, we have shown that    (B)        area of Square 2    =    area of Rectangle 2,
or                                                                        b2              =             cy,
and, solving for y we have                                             y   =   b2/c.
 
Thus,                                Rectangle 2 has a width of b2/c and a length of c.
 
Example.   If a = 3, b = 4, and c = 5 as shown in Figure 5 below, then Rectangle 1 has a width of 
a2/c  =  32/5  =  9/5, and Rectangle 2 has a width of b2/c  =  42/5  =  16/5.
           
                            
         
                                                                                                                                                              Dec 28, 2009
                                                                                         Home