Consecutive Squares Equations
 
     David W. Hansen
                                       © 2003                                 
 
 

         From the Pythagorean Theorem, we know that 32 + 42 = 52. Notice that the three squares are in

 

    consecutive order with two squares on the left and one square on the right. We call this a consecutive

 

    squares equation. Are there others? Let’s see.

 
         Since a2 + b2 = c2, then for the squares to be consecutive, we must have
 
                                                              b = a + 1                  and                  c = a + 2,                                       (1)
 
    giving us                                                           a2  +  (a + 1)2  =  (a + 2)2,
 
    or                                                              a2  +  (a2 + 2a + 1)  =  a2 + 4a + 4.
 
    Subtracting a2 from both sides of this equation and rewriting it with all terms to the left,
 
    we get                                                                a2  –  2a  –  3  =  0.
 
    Factoring this, we get                                        (a – 3)(a + 1)  =  0,
 
    so                                                                         a  =  3   or   a  =  - 1.
 
    Substituting into (1), we get       a  =  3,  b  =  4,  c  =  5       or        a  =  - 1,  b  =  0,  c  =  1.
 
    If we require that all integers be positive, then we see that there is only one consecutive
 
    squares equation; namely,                                 32  +  42  =  52.
 
         But what if we take more squares, say
 
                        a2   +        (a + 1)2       +        (a + 2)2       =        (a + 3)2      +       (a + 4)?                               (2)
 
    Then            a2   +   (a2 + 2a + 1)   +   (a2 + 4a + 4)   =   (a2 + 6a + 9)  +   (a2 + 8a + 16),
 
    or                                                                    a2  –  8a  –  20  =  0. 
 
    Factoring and solving for a, we get      (a – 10)(a + 2)  =  0, so  a  =  10   or   a = - 2.
 

    Substituting  a = 10 into (2) gives us:    102  +  11+  122  =  132  +  142    and we have found

 

    another consecutive squares equation!    So far we have

 
                                                                                      32  +  42  =  52
 
                                                                      102  +  11+  122  =  132  +  142
 

         This suggests a pattern for consecutive squares equations. In the first equation above, there are two

 

    squares to the left and one square to the right of the equals sign.  In the second, there are three squares to

 

    the left and two squares to the right.  Let’s try four squares to the left and three to the right; namely,

 
                                       a2 + (a + 1)2  + (a + 2)2  +  (a + 3)2   =   (a + 4)2 + (a + 5)2  +  (a + 6)2,                       (3)
 
    or            a2 + (a2+2a+1) + (a2+4a+4) + (a2+6a+9)  =  (a2+8a+16) + (a2+10a+25) + (a2+12a+ 36)
 
                                                               4a2 + 12a + 14   =   3a2 + 30a + 77,
 
    or                                                         a2  -  18a  -  63   =   0.
 
    Factoring, we have               (a + 3)(a – 21)  =  0,    so  a  =  21   or   a  =  - 3.
 
    Substituting  a = 21 into (3), we get        212  +  22+  232  +  242  =  252  +  262  +  272,
 
    another consecutive squares equation. Very fascinating! We now have
 
                                                                                     32 + 42  =  52
 
                                                                      102 + 112 + 122  = 132 + 142
             
                                                            212 + 222 + 232 + 242  =  252 + 262 + 272

 

    To distinguish between these equations, let’s call the number of squares on the right-hand side of a

 

    consecutive squares equation, the order of the equation. Thus, the last equation above is of order 3

 

    because it has three squares on its right-hand side.

 

         Now, look at the first terms on the left-hand side of each of the equations above; namely, 3, 10, and 21.

 

    If we can find a pattern in these starting numbers, we can find  the starting number for the consecutive

 

    squares equation of order 4.

 

         Let’s set up a table which lists the factors of each of these starting numbers along with the order of the

 

    equation in which they appear.

 
                                                                                 Table 1
 
                                                   Starting                             Expanded       Number of squares on
                          Order               Number          Factors        Factors             Left        Right

                               1                        3                  1(3)         1[2(1) + 1]              2              1
 
                               2                      10                  2(5)         2[2(2) + 1]              3              2
 
                               3                      21                  3(7)         3[2(3) + 1]              4              3
 
                               4                       --                      --                  --                      5              4
 
 

    Now if the pattern for the factors of each starting number in Table 1 continues, we would expect the factors

 

    for the equation of order 4 to be 4(9), making the starting number 36, and that there would be five squares

 

    on the left and four squares on the right. We would then get

 
                                   362  +    372   +    382  +    392   +    402    =    412   +     42 +    432   +    442
 
    or                         1296  +  1369  +  1444  +  1521  +  1600   =   1681  +  1764  +  1849  +  1936
 
    and                                                                                  7230     =     7230.
 
        So, this is true!   How very amazing!   We now have
 
                                                                                    32 + 42  =  52
 
                                                                     102 + 112 + 122  = 132 + 142
             
                                                            212 + 222 + 232 + 242 = 252 + 262 + 272
 
                                                  362 + 372 + 382 + 392 + 402 =  412 + 422 + 432 + 442
 
 
         Let’s rewrite Table 1 to include this new result and see if we can’t find a general formula for the starting
 
    numbers of all consecutive squares equations.
 
                                                                                  Table 1 (amended)
 
                                                     Starting                             Expanded       Number of squares on
                            Order               Number          Factors        Factors             Left        Right

                                 1                        3                  1(3)         1[2(1) + 1]              2              1
 
                                 2                      10                  2(5)         2[2(2) + 1]              3              2
 
                                 3                      21                  3(7)         3[2(3) + 1]              4              3
 
                                 4                      36                  4(9)         4[2(4) + 1]              5              4

                                 k                                                              k(2k + 1)            k + 1           k
 
         Now, by looking at the patterns of the first four starting numbers in Table 1 above, we surmise that the
 
    factors of the starting number F of the consecutive squares equation of order k will be k and 2k + 1. Thus, it
 
    appears that F = k(2k + 1), and there will be k + 1 squares on the left-hand and k squares on the right-hand
 
    side of the equation. Its two sides would then be
 
    Left-hand Side (k + 1 squares):
 
                                   F2        +        (F + 1)2        +        (F + 2)      +        (F + 3)2   + .   .   .  +   (F + k)2   
                              Term 1               Term 2                   Term 3                   Term 4                     Term k+1
 
    Right-hand Side (k squares):
 
                                  (F + k + 1) 2      +      (F + k + 2)2      +      (F + k + 3)    + .   .   .  +      (F + k + k)2   
                                     Term 1                      Term 2                      Term 3                                   Term k
 
    Now if we can show that these two sides are equal, then we will have found a general expression for the
 
    consecutive squares equation of order k.  Let’s see if we can.
 
    The left-hand side becomes
 
                                    F2   +   (F2 + 2F(1) + 12)   +   (F2 + 2F(2) + 22)   +  .  .  .  +  (F2 + 2F(k) + k2)
 
                           =       F2   +    [kF2  +  2F(1 + 2 + . . . + k)  +  (12 + 22 + . . . + k2)]                                      (4)
 
    The right-hand side becomes (letting G = F + k)
 
                                              (G + 1)2     +     (G + 22     +     (G + 3)2    +   .  .  .   +    (G + k)2
 
                            =      (G2 + 2G(1) + 12)   +   (G2 + 2G(2) + 22)   +   .  .  .   +   (G2 + 2G(k) + k2)
 
                            =        kG2    +    2G(1 + 2 + . . . + k)    +    (12 + 22 + . . . + k2)                                              (5)
 
    Replacing G by F + k in (5), we have
 
                                           k(F + k)2    +    2(F + k)(1 + 2 + . . . + k)    +    (12 + 22 + . . . + k2)
 
               =   k(F2 +  2Fk  +  k2)   +  2F(1 + 2 + . . . + k)  +  2k(1 + 2 + . . . + k)  +  (12 + 22 + . . . + k2)
 
               =    kF2  +  2Fk2  +  k3  +  2F(1 + 2 + . . . + k)  +  2k(1 + 2 + . . . + k)  +  (12 + 22 + . . . + k2)
 
               =  2Fk2  +  k3  +  2k(1 + 2 + . . . + k)   +   [kF2 + 2F(1 + 2 + . . . + k) + (12 + 22 + . . . + k2)]          (6)
 

    Comparing (6) with (4), we see that the three terms in the brackets in both expressions are identical,

 

    whereas the first three terms of (6) differ from the remaining first term of (4). Perhaps we can show that

 

    these first three terms of (6) equal the first term of (4).

 

         Since 1 + 2 + .  .  . + k  =  k(k+1)/2,  the first three terms of (6) become
 
                                                                   2Fk2  +  k3  +  2k(1 + 2 + . . . + k)
 
                                                              =   2Fk2  +  k3  +  2k [ k(k + 1)/2 ]

 

                                                                2Fk +  k3  +  (k3 + k2)

 

                                                              =   2Fk2  +  2k3  +  k2 

 

                                                              =   2Fk2  +  k2(2k + 1)

 

                                                              =  2Fk2  +   k[k(2k + 1)]

                                                                                                      

     Since F = k(2k + 1), we have       =   2Fk2  +  kF

 

                                                              =    kF(2k + 1)  

 

                                                              =    F[k(2k+1)] 

 

                                                              =    F2,      which is the first term of (4)!

 

    Replacing the first three terms in (6) by F2, we have
 
                                                 F2   +   [kF2 + 2F(1 + 2 + . . . + k)  + (12 + 22 + . . . + k2)],                           (7)
 

    which is identical to (4) above. Thus, the left-hand side (4) and the right-hand side (7) of the consecutive

 

    squares equation of order k are identical, and we have proved the following:

 


                                              Consecutive Squares Equations                                        

                        In a consecutive squares equation of order k, there are k + 1 consecutive squares  

                               on the left-hand side and k consecutive squares on the right-hand side.
 
                  The first term is F2, the last term is (F + 2k)2, where F = k(2k+1), and the equation is
 
               F2  +  (F+1)2  +  (F+2)2  +  .   .   .  +  (F+k)2   =   (F+k+1) 2 +  (F+k+2)+  .   .   .  +  (F+2k)2,
  
                  or                       F2   +   .   .   .   +   FL2          =         FR2    .   .   .   +   (F+2k)2,
 
                         where FL (the base of the last term on the left-hand side)  =  F + k,  and
 
                      FR (the base of the first term on the right-hand side)  =  F + k + 1  =  FL + 1. 
 

    Example 1Find the consecutive squares equation of order 6.  Since the order is 6, then k = 6, 

    F = (2k+1)  =  6(13)  =  78, and F + 2k  =  78 + 2(6)  =  90. Thus, the first term is 782, and the last term

 

    is 902.    FL =  F + k  =  78 + 6  =  84, and  FR  =  FL + 1  =  85.  There are  k+1 = 7 squares on the left

 

    and k = 6 squares on the right side of the equation,  giving us

 

               782  +  792  +  802  +  812  +  822  +  832  +  842   =   852  +  862  +  872  +  882  +  892  +  902.

 

 

    Example 2Find the order of the consecutive squares equation whose third term is 572.  Since its third

 

    term is  572,  its first term  F2  must be  552.  Thus  F =  k(2k+1)  =  55, or   2k2 + k – 55 = 0,

 

    (2k + 11)(k – 5) = 0,   k = - 11/2   or   k = 5.  The order is thus 5, and  the equation is

 

                     552  +  562  +  572  +  582  +  592  +  60 =   612  +  622  +  632  +  642  +  652.

 

 

    Example 3Find a consecutive squares equation with 15 terms.  Since there are k+1 terms on the left-

 

    hand side and k terms on the right-hand side of the equation, there will be a total of  (k+1) + k = 2k + 1

 

    terms.   So, 2k + 1= 15, and k = 7.   Thus, the order is 7.   So,  k = 7,  F =  k(2k+1)  =  7(15)  =  105,

 

    FL =  F + k  =  105 + 7  = 112,  FR  =  FL + 1  =  113,  F + 2k  = 105 + 2(7)  = 119,  giving us

 

                                 105+  1062  + .  .  .  +  1122   =  1132  +  1142  +  .  .  .  +  1192.

 
 
    Example 4Find a consecutive squares equation such that the base of its last term is 20 more than the
 
    base of its first term.  Since the base of the last term is  F + 2k and the base of the first term is F, we have

 

    F + 2k  =  F + 20,    2k  =  20,   k  = 10.   So, F =  k(2k+1)  =  10(21)  =  210,  FL =  F + k  =  210 + 10 = 220,

 

    FR  =  221, and  F + 2k  =  210 + 2(20)  =  230,  giving us 

 

                                   210+  2112  +  .  .  .  +  2202    =    2212  +  2222  +  .  .  .  +  2302.

 

 

    Example 5.  Find the 13th term of a consecutive squares equation of order 8.  Since the order is 8, then

 

    k = 8, and the base of the first term F =  k(2k+1)  =  8(17)  = 136. The base of the second term will be one

 

    greater than the fi rst term; namely, 137. The base of the third term will be two greater than the first term;

 

    namely, 138, and so on. Thus,  the base of the 13th term will be 12 greater than the first term; namely,

 

    136 + 12 = 148,  and the 13th term will be 1482.  

 
       
                                                                                    References
         
      [1]  Ball, W. W. Rouse,  Mathematical Recreations & Essays, American ed., New York: The Macmillan
                 Company, 1947, p. 58
 
                                                                                         Home