Alternating Squares
                       
                                                                 David W. Hansen
                                                                                       ©   2004
 
            A series in which the sign of each term alternates between positive and negative is called an
      alternating series. 12 – 22 + 32 – 42 is an example of an alternating series of squares. Let’s look at
      some alternating series of squares of consecutive natural numbers. Here are a few of them.
 
                                     12  – 22             =            1 – 4               =      - 3       =           - (1 + 2)
 
                                  12  – 22 + 32        =        1 – 4 + 9             =        6       =        + (1 + 2 + 3)
 
                             12 – 22  + 32  – 42    =    1 – 4 + 9 – 16        =    - 10       =      - (1 + 2 + 3 + 4),
 
      and in general, we have
 
                                     12 – 22  + 32  – 42   +  .  .  .  + (-1)n+1n2   =    (-1)n+1 (1 + 2 + 3 +  .  .  .  + n).                  (1)
 
           We shall prove this by mathematical induction
 
      1.  Let n = 1. Then, 12 = 1, and (-1)1+1 = 1. Thus, the theorem (1) is true for n = 1. It is also true for
           n  =  2, 3, and 4 as shown above.
 
      2.  Assume (1) is true for n = k, where k is some natural number. Then, we know that
 
                                    12 – 22  + 32  – 42   +  .  .  .  + (-1)k+1k2   =    (-1)k+1 (1 + 2 + 3 +  .  .  .  + k)                    (2)
 
      3.  Let n = k+1. We must then prove that
 
                    12 – 22  + 32  – 42   + . . . + (-1)k+2(k+1)2   =    (-1)k+2 (1 + 2 + 3 + . . . + k+1 )                                (3)
 
      4.  Proof of (3).                        12 – 22   + . . . + (-1)k+2(k+1)2 
 
             =      [12 – 22   + . . . + (-1)k+1k2 ]   +     (-1)k+2(k+1)2
 
             =        (-1)k+1 (1 + 2 + . . . + k)        +     (-1)k+2(k+1)2                 ( substituting from (2) above )
 
             =             (-1)k+1 [ k(k+1)/2 ]            +     (-1)k+2(k+1)2         ( since 1 + 2 + . . . + k = k(k+1)/2 )
 
             =             (-1)k+1 [ k(k+1)/2 ]            +     (-1)k+1(-1) (k+1)2          ( factoring out  -1 from (-1)k+2 )
 
             =                  (-1)k+1 (k+1) [ k/2 + (-1)2(k+1)/2                ( factoring out (-1)k+1 (k+1) and getting a
                                                                                                                 common denominator of 2 )
             =                  (-1)k+1 (k+1) [ k - 2k - 2 ] / 2
 
             =      (-1)k+1 (k+1) [ - k - 2 ] / 2     =    (-1)k+1 (k+1) (- 1) [k + 2] / 2   =    (-1)k+2 (k+1)(k+2) / 2
 
             =      (-1)k+2 (1 + 2 + 3 + . . . + k+1 ),                        [ since 1 + 2 + 3 + . . . + k+1 = (k+1)(k+2)/2 ],
 
        which is (3) above.
 
     5.    By the Principle of Mathematical Induction, the theorem (1) is proved.
 
     ExampleFind the value of 12 – 22 + 32 – 42 + 52 – 62 + 72 – 82 without squaring any numbers.  Since
                       n = 8, the value is   (-1)9 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)  =  36.
 
                                                                                        Home